Abstract:0.6%-1.4% submicron TiH2 and 0.8% nano-TiB2 particles (mass fraction, the same as below) were added into AA7075 powders, low-energy ball milled (TiH2+TiB2)/AA7075 composite powders were used to fabricate composites by selective laser melting (SLM). Microstructures and mechanical properties of SLMed composites with different TiH2 additive amounts were studied. The results show that the addition of submicron TiH2 and nano-TiB2 particles can significantly inhibit the cracks of SLMed AA7075 composites. The cracks can be completely eliminated when 1.4%TiH2 and 0.8%TiB2 are added. When the TiH2 additive amount increases from 0.6% to 1.4%, columnar grains in the microstructure are all transformed into equiaxed grains, and the average grain size is refined to 1.38 μm from 2.33 μm. When the TiH2 additive amount is 1.4%, the tensile strength, yield strength and elongation of the AA7075 composites are 360 MPa, 328 MPa and 12.0%, respectively. After T6 heat treatment, the properties are further improved. The tensile strength and yield strength increase to 461 MPa and 394 MPa, respectively, and the elongation increases to 15.3%.
[1] 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015(5): 607-611. DONG Peng, LI Zhonghua, YAN Zhenyu, et al.Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015(5): 607-611. [2] 李艳梅, 蓝哲雯, 陈英俊. SLM金属3D成型中支撑类缺陷优化研究[J]. 金属世界, 2019(4): 16-19. LI Yanmei, LAN Zhewen, CHEN Yingjun.Research on supporting defect optimization in SLM Metal 3D Forming[J]. Metal World, 2019(4):16-19. [3] 谢琰军, 杨怀超, 王学兵, 等. 选择性激光熔化7075合金组织和力学性能的研究[J]. 粉末冶金工业, 2018, 28(3): 13-18. XIE Yanjun, YANG Huaichao, WANG Xuebin, et al.Study on microstructure and mechanical properties of 7075 aluminum alloy fabricated by selective laser melting[J]. Powder Metallurgy Industry, 2018, 28(3): 13-18. [4] 吴义. 基于损伤的7075-T6铝合金HFQ工艺成形性实验研究[D]. 大连: 大连理工大学, 2017: 1-5. WU Yi.Experimental study on formability of 7075-T6 aluminum alloy HFQ based on damage[D]. Dalian: Dalian University of Technology, 2017: 1-5. [5] 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55(1): 22-28. ZHU Haihong, LIAO Hailong.Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 22-28. [6] KAUFMANN N, IMRAN M, WISCHEROPP T M, et al.Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918-926. [7] SISTIAGA M M L, MERTENS R, VRANCKEN B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445. [8] LEI Z L, BI J, CHEN Y B, et al.Effect of energy density on formability, microstructure and micro-hardness of selective laser melted Sc-and Zr-modified 7075 aluminum alloy[J]. Powder Technology, 2019, 356: 594-606. [9] MARTIN J H, YAHATA B D, HUNDLEY J M, et al.3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-371. [10] 韩延峰, 张瀚龙, 徐钧, 等. 基于Al-Ti-B细化剂的铝合金异质形核机制研究进展[J]. 中国材料进展, 2018, 37(8): 632-637. HAN Yanfeng, ZHANG Hanlong, XU Jun, et al.Development of grain refining mechanism of Al alloys by Al-Ti-B master alloy[J]. Materials China, 2018, 37(8): 632-637. [11] 刘相法, 边房秀. 铝合金组织细化用中间合金[M]. 长沙: 中南大学出版社, 2012: 49-54. LIU Xiangfa, BIAN Fangxiu.Master alloys for the structure refinement of aluminium alloys[M]. Changsha: Central South University Press, 2012:49-54. [12] ZHANG H, ZHU H, QI T, et al.Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties[J]. Materials Science & Engineering A, 2016, 656: 47-54. [13] 熊翔, 黄伯云. Ti和TiH2与Al反应合成TiAl的研究[J]. 矿冶工程, 1997(3): 77-80. XIONG Xiang, HUANG Baiyun.Synthesis of TiAl alloy by reaction of Ti and TiH2 with Al powder[J]. Mining and Metallurgical Engineering, 1997(3): 77-80. [14] 刘红卫, 陈康华. 原位合成TiB2和Al3Ti对ZL201的晶粒细化效果[J]. 特种铸造及有色合金, 2004, 12(2): 4-6. LIU Hongwei, CHEN Kanghua.Influence of in-situ synthetic TiB2 and Al3Ti on particle refinement for ZL201 alloy[J]. Special-cast and Non-ferrous Alloys, 2004, 12(2): 4-6. [15] 胡亮, 刘允中, 涂诚, 等. 纳米TiB2对激光选区熔化2024铝合金显微组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(4): 365-373. HU Liang, LIU Yunzhong, TU Cheng, et al.Effects of nano-TiB2 particles on microstructure and mechanical properties of AA2024 deposited by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 365-373. [16] NIE X, ZHANG H, ZHU H, et al.Effect of Zr additive amount on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys[J]. Journal of Alloys and Compounds, 2018, 764: 977-986. [17] 万达远, 李小强, 赖佳明, 等. 基于选择性激光熔化技术7075铝合金组织性能与裂纹的研究[J]. 应用激光, 2019, 39(1): 1-8. WAN Dayuan, LI Xiaoqiang, LAI Jiaming, et al.Microstructure properties and crack of 7075 aluminum alloy based on selective laser melting technology[J]. Applied Laser, 2019, 39(1): 1-8. [18] 万彩云, 陈江华, 杨修波, 等. 7xxx系AlZnMgCu铝合金早中期时效强化析出相的研究[J]. 电子显微学报, 2010, 29(5): 455-460. WAN Caiyun, CHEN Jianghua, YANG Xiubo, et al.Study of the early & mid-stage hardening precipitates in a 7xxx AlZnMgCu aluminium alloy[J]. Journal of Chinese Electron Microscopy Society, 2010, 29(5): 455-460. [19] 张云崖. Al-Zn-Mg-Cu合金再结晶的控制及亚晶界对MgZn2粒子析出的影响[D]. 长沙: 中南大学, 2013: 40-46. ZHANG Yunya.The control of recrystallization of Al-Zn-Mg-Cu alloys and effects of sub-grain boundaries on the precipitation of MgZn2 phase particles[D]. Changsha: Central South University, 2013: 40-46. [20] KING W E, BARTH H D, CASTILLO V M, et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(12): 2915-2925. [21] RESCHETNIK W, BRUGGEMANN J P, AYDINOZ M E, et al.Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016(2): 3040-3048. [22] 黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010(6): 12-27. HUANG Weidong, LIN Xin.Research progress in laser solid forming of high performance metallic component[J]. Materials China, 2010(6): 12-27.