Preparation and tensile behavior of SiCf/SiC minicomposites with (PyC/SiC)n multilayered interphases
YANG Ping1, ZHANG Ruiqian2, LI Yue1, CHEN Zhaoke1, HE Zhongbei2, LIU Guiliang2, FU Daogui2, SUN Wei1, WANG Yalei1, XIONG Xiang1
1. Key Laboratory of Lightweight, High Strength Structural Materials, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; 2. Reactor Fuel and Materials Laboratory, uclear Power Institute of China, Chengdu 610213, China
Abstract:(PyC/SiC)4 or (PyC/SiC)8 multi-layer interphases were introduced into two types of SiC fiber bundles by CVI method and further densified with SiC to obtain SiCf/SiC minicomposites. The effects of fiber types and interface types on mechanical properties and fracture mechanism of SiCf/SiC minicomposites were studied. The results show that, the densified SiCf/SiC minicomposite is a whole. In the minicomposites, a clear interface layer with an uniform thickness can be observed between fiber and matrix. The maximum tensile strength of A/(PyC/SiC)4/SiC, B/(PyC/SiC)4/SiC and A/(PyC/SiC)8/SiC minicomposites are 466, 350 and 330 MPa respectively, with the ultimate tensile strain of 0.519%, 0.219% and 0.330%, respectively. In addition, the fracture morphologies of minicomposites and the length of pull-out fiber with different types of reinforced fiber and interface are quite different, indicated a different fracture mode. The A/(PyC/SiC)4/SiC fractures in Model Ⅱ, B/(PyC/SiC)4/SiC and A/(PyC/SiC)8/SiC fracture in ModelⅠ.
杨平, 张瑞谦, 李月, 陈招科, 何宗倍, 刘桂良, 付道贵, 孙威, 王雅雷, 熊翔. 含(PyC/SiC)n多层界面SiCf/SiC Mini复合材料的制备与拉伸行为[J]. 粉末冶金材料科学与工程, 2018, 23(6): 553-561.
YANG Ping, ZHANG Ruiqian, LI Yue, CHEN Zhaoke, HE Zhongbei, LIU Guiliang, FU Daogui, SUN Wei, WANG Yalei, XIONG Xiang. Preparation and tensile behavior of SiCf/SiC minicomposites with (PyC/SiC)n multilayered interphases. Materials Science and Engineering of Powder Metallurgy, 2018, 23(6): 553-561.
[1] KATOH Y, SNEAD L L, JR C H H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455(1/3): 387-397. [2] NASLAIN R.Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science & Technology, 2004, 64(2): 155-170. [3] JONES R H, GIANCARLI L, HASEGAWA A, et al.Promise and challenges of SiCf/SiC composites for fusion energy applications[J]. Journal of Nuclear Materials, 2002, 307(3): 1057-1072. [4] SOMMERS A, WANG Q, HAN X, et al.Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review[J]. Applied Thermal Engineering, 2010, 30(11): 1277-1291. [5] 周新贵. SiC/SiC复合材料研究现状[J]. 功能材料信息, 2010, 7(5/6): 21-25. ZHOU Xingui.Research status of SiC/SiC Composites[J]. Functional Material Information, 2010, 7(5/6): 21-25. [6] IVEKOVIC A, NOVAK S, DRAZIC G, et al.Current status and prospects of SiCf/SiC for fusion structural applications[J]. Journal of the European Ceramic Society, 2013, 33(10): 1577-1589. [7] ZHOU Y, ZHOU W C, LUO F, et al.Effects of dip-coated BN interphase on mechanical properties of SiCf/SiC composites prepared by CVI process[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5): 1400-1406. [8] ZENG F H, XIONG X, LI Guogong, et al.Microstructure and mechanical properties of 3D fine-woven punctured C/C composites with PyC/SiC/TaC interphases[C]// 2009 Frontier Symposium of China Postductors on Materrials Science, 2009. [9] RAPAUD O, JACQUES S, DI-MURRO H, et al.SiC/SiC minicomposites with (PyC/TiC)n, interphases processed by pressure-pulsed reactive CVI[J]. Journal of Materials Science, 2004, 39(1): 173-180. [10] 肖鹏, 熊翔, 张红波, 等. C/C-SiC陶瓷制动材料的研究现状与应用[J]. 中国有色金属学报, 2005, 15(5): 667-674. XIAO Peng, XIONG Xiang, ZHANG Hongbo, et al.Progress and application of C/C-SiC ceramic braking materials[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 667-674. [11] 孟志新, 成来飞, 刘善华, 等. PyC层对SiC纤维束及MiniSiC/SiC复合材料拉伸性能和强度分布的影响[J]. 材料导报, 2011, 25(16): 5-7. MENG Zhixin, CHENG Laifei, LIU Shanqi, et al.Effect of PyC layer on tensile properties and strength distribution of SiC fiber bundless and Mini SiC/SiC composite[J]. Materials Review, 2011, 25(16): 5-7. [12] CHATEAU C, GELEBART L, BORNERT M, et al.In situ X-ray microtomography characterization of damage in SiC/SiC minicomposites[J]. Composites Science and Technology, 2011, 71(6): 916-924. [13] BERTRAND S, PAILLER R, LAMON J.Influence of strong fiber/coating interfaces on the mechanical behavior and lifetime of Hi-Nicalon/(PyC/SiC)n/SiC minicomposites[J]. Journal of the American Ceramic Society, 2001, 84(4): 787-794. [14] BERTRAND S, FORIO P, PAILLER R, et al.Hi-Nicalon/SiC Minicomposites with (pyrocarbon/SiC)n nanoscale multilayered interphases[J]. Journal of the American Ceramic Society, 1999, 82(9): 2465-2473. [15] BERTRAND S, DROILLARD C, PAILLER R, et al.TEM structure of (PyC/SiC)n, multilayered interphases in SiC/SiC composites[J]. Journal of the European Ceramic Society, 2000, 20(1): 1-13. [16] BUET E, SAUDER C, SORNIN D, et al.Influence of surface fibre properties and textural organization of a pyrocarbon interphase on the interfacial shear stress of SiC/SiC minicomposites reinforced with Hi-Nicalon S and Tyranno SA3 fibres[J]. Journal of the European Ceramic Society, 2014, 34(2): 179-188. [17] ALMANSOURA, MAILLET E, RAMASAMY S, et al.Effect of fiber content on single tow SiC minicomposite mechanical and damage properties using acoustic emission[J]. Journal of the European Ceramic Society, 2015, 35(13): 3389-3399. [18] SAUDER C, BRUSSON A, LAMON J.Influence of interface characteristics on the mechanical properties of Hi-Nicalon type- S or Tyranno-SA3 Fiber-Reinforced SiC/SiC minicomposites[J]. International Journal of Applied Ceramic Technology, 2010, 7(3):291-303. [19] NASLAIN R, LAMON J, PAILLER R, et al.Micro/ minicomposites: a useful approach to the design and development of non-oxide CMCs[J]. Composites Part A Applied Science & Manufacturing, 1999, 30(4): 537-54.