Microstructure and properties of pure molybdenum block prepared by selective electron beam melting
LI Huixia1, ZHU Jilei1, TAN Yannni2, LIU Bin2, CHEN Rui1, ZHAO Pei1, YI Yang1
1. Xi'an Sailong Metal Materials Co., Ltd., Xi'an 710018, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract:The block of pure molybdenum was fabricated for the first time by selective electron beam melting. Its impurities, microstructure, density and micro-hardness were tested using chemical analysis, metallurgical microscopy, chemical balance and microhardness tester. The results show that the impurity increments of the as-build pure molybdenum such as C, N, O and H are not more than 0.001%. Using a single-melting process, the microstructure of pure molybdenum along the deposition direction present scoarse columnar crystal characteristics, and there are a few microcracks along the columnar grain boundary. Using a double-melting process, the grain size is refined and the microcrack phenomenon is suppressed. The better selective electron beam double-melting process is as follows: the primary melting current is 12 mA, and the velocity is 0.6 m/s; the secondary melting current is 12 mA, and the velocity is 0.89 m/s. Under the better process, the relative density of the as-build pure molybdenumblock is higher than 99% with a density of (10.15±0.13) g/cm3. The microhardness (HV0.2) is 185-200 and shows no anisotropy.
李会霞, 朱纪磊, 谭彦妮, 刘彬, 陈睿, 赵培, 弋阳. 电子束选区熔化制备纯钼块体的组织与性能[J]. 粉末冶金材料科学与工程, 2020, 25(6): 497-504.
LI Huixia, ZHU Jilei, TAN Yannni, LIU Bin, CHEN Rui, ZHAO Pei, YI Yang. Microstructure and properties of pure molybdenum block prepared by selective electron beam melting. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 497-504.
[1] 郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展[J]. 工业技术创新, 2017, 4(4): 6-14. GUO Chao, ZHANG Pingping, LIN Feng. Research advances of electron beam selective melting additive manufacturing technology[J]. Industrial Technology Innovation, 2017, 4(4): 6-14. [2] 汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3): 225-235. TANG Huiping, WANG Jian, LU Shenglu, et al. Research progress in selective electron beam melting[J]. Materials China, 2015, 34(3): 225-235. [3] ZHANG X Z, TANG H P, LEARY M, et al.Toward manufacturing quality Ti-6Al-4V lattice struts by selective electron beam melting (SEBM) for lattice design[J]. The Minerals, Metals & Materials Society, 2018, 70(9): 1870-1876. [4] YANG Y G, YANG P W, YANG K, et al.Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting[J]. International Journal of Refractory Metals & Hard Materials, 2019(84): 105040. [5] TERRAZAS C A, MIRELES J, GAYTAN S M, et al.Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology[J]. International Journal of Advanced Manufacturing Technology, 2016(84): 1115-1126. [6] TANG H P, YANG K, JIA L, et al.Tantalum bone implants printed by selective electron beam manufacturing (SEBM) and their clinical applications[J]. The Minerals, Metals & Materials Society, 2020, 72(3): 1016-1021. [7] TODAI M, NAKANO T, LIU T Q, et al.Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing, 2017(13): 61-70. [8] HELMER H E, KORNER C, SINGER R F, et al.Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure[J]. Journal of Materials Research, 2014, 29(17): 1987-1996. [9] 赵虎. 钼及钼合金烧结技术研究及发展[J]. 粉末冶金技术, 2019, 37(5): 382-391. ZHAO Hu. Research and development on the sintering techniques of molybdenum and molybdenum alloys[J]. Powder Metallurgy Technology, 2019, 37(5): 382-391. [10] 董帝, 黄洪涛, 熊宁, 等. 钼及钼合金在核反应堆中的应用[J].中国钼业, 2018, 42(4): 6-13. DONG Di, HUANG Hongtao, XIONG Ning, et al. Application of molybdenum and molybdenum alloys in nuclear reactions[J]. China Molybdenum Industry, 2018, 42(4): 6-13. [11] 居炎鹏, 王爱琴. 钼合金研究现状[J]. 粉末冶金工业, 2015, 25(4): 58-62. JU Yanpeng, WANG Aiqin. Current research status of Mo alloys[J]. Powder Metallurgy Industry, 2015, 25(4): 58-62. [12] 郭志俊, 林勇, 王文明. 热等静压工艺对金属钼力学性能的影响[J]. 兵器材料科学与工程, 2002, 25(4): 22-32. GUO Zhijun, LIN Yong, WANG Wenming. Effect of HIP on physicomechanical properties of molybdenum[J]. Ordnance Material Science and Engineering, 2002, 25(4): 22-32. [13] 唐哲, 刘斌, 李玉新. 快速成型钼金属喷管高温烧结试验研究[J]. 铸造技术, 2012, 33(3): 277-279. TANG Zhe, LIU Bin, LI Yuxin. Research of high temperature sintering for rapid prototyping Mo metal nozzle[J]. Foundry Technology, 2012, 33(3): 277-279. [14] 胡保全,白培康,程军. 选择性激光烧结钼基复合粉末(TZM) 造金属零件[J]. 铸造设备研究, 2008(2): 17-20. HU Baoquan, BAI Peikang, CHENG Jun. Fabrication of alloy parts by selective laser sintering molybdenum matrix composite powders[J]. Research Studies on Foundry Equipment, 2008(2): 17-20. [15] FAIDEL D, J0NAS D, NATOUR G, et al. Investigation of the selective laser melting process with molybdenum powder[J]. Additive Manufacturing, 2015(8): 88-94. [16] KASERER L, BRAUN J, STAJKOVIC J, et al.Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon[J]. International Journal of Refractory Metals and Hard Materials, 2019(84): 105000. [17] WANG D W, YU C F, MANG J, et al.Densification and crack suppression in selective laser melting of pure molybdenum[J]. Materials and Design, 2017, 129(9): 44-52. [18] 李继东, 王长华, 墨淑敏, 等. 钼化学分析方法: GB/T4325—2013[S]. 北京: 中国标准出版社, 2013. LI Jidong, WANG Changhua, Mo Shumin, et al. Methods for molybdenum chemical analysis: GB/T 4325-2013[S]. Beijing: China Standards Press, 2013. [19] 杨广宇, 杨鹏伟, 刘楠, 等. 电子束选区熔化成形纯钨的显微组织与晶体取向[J]. 稀有金属材料与工程, 2019, 48(8): 2580-2584. YANG Guangyu, YANG Pengwei, LIU Nan, et al. Microstructure and crystal orientation of pure tungsten fabricated by selective electron beam melting[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2580-2584. [20] LUO Y, XING L L, JIANG Y D, et al.Additive manufactured large Zr-based bulk metallic glass composites with desired deformation ability and corrosion resistance[J]. Materials, 2020, 13(3): 1-17. [21] 锁红波, 陈哲源, 李晋炜. 电子束熔融快速制造Ti-6Al-4V 的力学性能[J]. 航天制造技术, 2009(6): 18-22. SUO Hongbo, CHEN Zheyuan, LI Jinwei. Mechanical properties of Ti-6Al-4V alloys by electron beam melting (EBM)[J]. Aerospace Manufacturing Technology, 2009(6): 18-22.