Abstract:The (TiB2+SiC)/AlSi10Mg composite powders, with 2% nano-TiB2 particles and 1% submicron-SiC particles were prepared by low-energy ball milling and used for selective laser melting (SLM) process. The microstructures and mechanical properties of aluminum matrix composites (AMCs) reinforced with hybrid TiB2 and SiC and AlSi10Mg alloy were studied by XRD, EBSD and SEM. The results show that the laser reflectivity of the composite powders reduces from 46% to 31% compared to that of AlSi10Mg alloy powders. AMCs reinforced with TiB2 and SiC, with excellent properties, were successfully prepared by SLM at a low laser power of 240 W. Nano-TiB2 particles and submicron-SiC particles are uniformly distributed inside the grains, but a few nano-TiB2 particle sagglomerate and growup tomicron-scale. With the addition of nano-TiB2 particles and submicron-SiC particles, the coarse columnar grains are transformed into equiaxed grains and the average grain size decreases from 7.88 μm to 2.48 μm. The tensile strength, ductility increase to 509.8 MPa, 10.6%, respectively.
沈君剑, 刘允中, 欧阳盛, 洪旭潮, 刘小辉. 激光选区熔化成形TiB2与SiC颗粒混杂增强铝基复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 251-259.
SHEN Junjian, LIU Yunzhong, OUYANG Sheng, HONG Xuchao, LIU Xiaohui. Microstructures and mechanical properties of aluminum matrix composites reinforced with hybrid TiB2 and SiC prepared by selective laser melting. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 251-259.
[1] CANAKCI A, VAROL T.Microstructure and properties of AA7075/Al-SiC composites fabricated using powder metallurgy and hot pressing[J]. Powder Technology, 2014, 268: 72-79. [2] TJONG S C.Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties[J]. Advanced Engineering Materials, 2007, 9(8): 639-652. [3] CHAWLA N, CHAWLA K K.Metal-matrix composites in ground transportation[J]. JOM, 2006, 58(11): 67-70. [4] SMAGORINSKI M E, TSANTRIZOS P G, GRENIER S, et al.The properties and microstructure of Al-based composites reinforced with ceramic particles[J]. Materials Science and Engineering A, 1998, 244(1): 86-90. [5] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 9-21. YANG Yongqiang, CHEN Jie, SONG Changhui, et al.Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 9-21. [6] 武王凯, 周琦琛, 费宇宁, 等. 金属3D打印技术研究现状及其趋势[J]. 中国金属通报, 2019(5): 186-188. WU Wangkai, ZHOU Qichen, FEI Yuning, et al.Research status and trend of metal 3D printing technology[J]. China Metal Bulletin, 2019(5): 186-188. [7] 杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展[J]. 材料导报, 2016, 30(S1): 107-111. YANG Quanzhan, WEI Yanpeng, GAO Peng, et al.Research progress of metal additive manufacturing technologies and related materials[J]. Materials Reports, 2016, 30(S1): 107-111. [8] 张家莲, 李发亮, 张海军. 选区激光熔化技术制备金属材料研究进展[J]. 激光与光电子学进展, 2019, 56(10): 27-36. ZHANG Jialian, LI Faliang, ZHANG Haijun.Research progress on preparation of metallic materials by selective laser melting[J]. Laser & Optoelectronics Progress, 2019, 56(10): 27-36. [9] 甘武奎, 彭金贵, 李仕豪, 等. 铝合金选区激光熔化精密成形及其在航空领域的应用[J]. 航空制造技术, 2019, 62(16): 53-63. GAN Wukui, PENG Jingui, LI Shihao, et al.Aluminum alloy selective laser melting precision forming technology and application in aviation field[J]. Aeronautical Maufacturing Technology, 2019, 62(16): 53-63. [10] 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607-611. DONG Peng, LI Zhonghua, YAN Zhenyu, et al.Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607-611. [11] TREVISAN F, CALIGNANO F, LORUSSO M, et al.On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties[J]. Materials (Basel, Switzerland), 2017, 10(1): 76. [12] OLAKANMI E O, COCHRANE R F, DALGARNO K W.A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477. [13] LOUVIS E, FOX P, SUTCLIFFE C J.Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2): 275-284. [14] 李忠文, 金慧玲, 李士胜, 等. 混杂增强金属基复合材料的研究进展[J]. 中国材料进展, 2016, 35(9): 694-701. LI Zhongwen, JIN Huiling, LI Shisheng, et al.Research and development of hybrid reinforced metal matrix composites[J]. Materials China, 2016, 35(9): 694-701. [15] 詹美燕, 陈振华. SiCp颗粒增强铝基复合材料塑性变形中过程的强化机制与断裂机制研究[J]. 材料导报, 2004, 18(1): 57-60. ZHAN Meiyan, CHEN Zhenghua.Research on strengthening and fracture mechanism of SiC particle reinforced Al matrix composites[J]. Materials Reports, 2004, 18(1): 57-60. [16] ZHOU S Y, WANG Z Y, SU Y, et al. Effects of micron/ submicron TiC on additively manufactured AlSi10Mg: A comprehensive study from computer simulation to mechanical and microstructural analysis[J]. JOM, 2020(online). https://doi. org/10.1007/s11837-019-03984-w. [17] XUE G, KE L, ZHU H, et al.Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties[J]. Materials Science & Engineering A, 2019, 764: 138-155. [18] 章敏立, 吴一, 廉清, 等. 激光选区熔化成形原位自生TiB2/Al-Si复合材料的微观组织和力学性能[J]. 复合材料学报, 2018, 35(11): 3114-3121. ZHANG Minli, WU Yi, LIAN Qing, et al.Microstructures and mechanical properties of in-situ TiB2/Al-Si composite fabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3114-3121. [19] 高红霞, 王蒙, 樊江磊, 等. 混杂颗粒增强铝基复合材料的研究进展[J]. 粉末冶金工业, 2019, 29(3): 1-7. GAO Hongxia, WANG Meng, FAN Jianglei, et al.Research progress of hybrid particles reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2019, 29(3): 1-7. [20] 华波, 朱和国. 颗粒增强铝基复合材料强化机制的研究现状评述[J]. 材料科学与工程学报, 2015, 33(1): 151-156. HUA Bo, ZHU Heguo.State of the art of particle reinforced aluminum matrix composites[J]. Journal of Materials Science and Engineering, 2015, 33(1): 151-156. [21] 李缨, 黄凤萍, 梁振海. 碳化硅陶瓷的性能与应用[J]. 陶瓷, 2007(5): 36-41. LI Ying, HUANG Fengping, LIANG Zhenhai, et al.Properties and applications of silicon carbide ceramics[J]. Ceramics, 2017(5): 36-41. [22] 冷金凤, 武高辉. SiCp+Gr/2024Al复合材料的力学性能和加工性能[J]. 稀有金属, 2006(S1): 20-23. LENG Jinfeng, WU Gaohui.Mechanical properties and processability of SiCp+Gr/2024Al composites[J]. Chinese Journal of Rare Metals, 2006(S1): 20-23. [23] 向新, 秦岩. TiB2及其复合材料的研究进展[J]. 陶瓷学报, 1999(2): 112-117. XIANG Xin, QIN Yan.Development of research on TiB2 and its composites[J]. Journal of Ceramics, 1999(2): 112-117. [24] LI X P, JI G, CHEN Z, et al.Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129(Complete): 183-193. [25] 薛菁, 王俊, 孙宝德. TiB2颗粒增强铝基复合材料的研究进展[J]. 材料热处理技术, 2009, 38(24): 43-47. XUE Jing, WANG Jun, SUN Baode.Research development of TiB2 particle reinforced Al matrix composites[J]. Material & Heat Treatment, 2009, 38(24): 43-47. [26] QUESTED T E, GREER A L, COOPER P S.The variable potency of TiB2 nucleant particles in the grain refinement of aluminium by Al-Ti-B additions[J]. Materials Science Forum, 2002, 396(4): 53-58. [27] MENG C, CUI H C, LU F G, et al.Evolution behavior of TiB2 particles during laser welding on aluminum metal matrix composites reinforced with particles[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1543-1548. [28] 戈晓岚, 蔡兰, 张洁, 等. 微米和亚微米SiCP增强Al基复合材料的力学性能[J]. 江苏大学学报(自然科学版), 2008, 29(6): 494-497. GE Xiaolan, CAI Lan, ZHANG Jie, et al.Mechanical properties of micrometer and sub-micrometer SiCP reinforced Al matrix composites[J]. Journal of Jiangsu University (Natural Science Edition), 2008, 29(6): 494-497. [29] 胡亮, 刘允中, 涂诚, 等. 纳米TiB2对激光选区熔化2024铝合金显微组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(4): 365-373. HU Liang, LIU Yunzhong, TU Cheng, et al.Effects of nano-TiB2 particles on microstructure and mechanical properties of AA2024 deposited by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 365-373. [30] 杨莹. 铝合金选区激光熔化的吸收行为模拟与实验研究[D].南京: 南京航空航天大学, 2019: 1-70. YANG Ying.Simulation and experimental study on absorption behavior of aluminum alloy based on selective laser melting[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 1-70. [31] 王泓乔. Al基纳米复合材料机械合金化制备及选区激光熔化成形研究[D]. 南京: 南京航空航天大学, 2015: 1-82. WANG Hongqiao.Al based nanocomposites prepared by mechanical alloying and selective laser melting fabrication[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 1-82. [32] WANG P, LI H C, PRASHANTH K G, et al.Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 707: 287-290. [33] 余开斌,刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 298-305. YU Kaibin, LIU Yunzhong, YANG Changyi.Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 298-305. [34] BRANDL E, HECKENBERGER U, HOLZINGER V, et al.Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159-169. [35] 赵轩. 基于SiC和TiB2增强的Al基复合材料选区激光熔化成形研究[D]. 南京: 南京航空航天大学, 2019: 1-75. ZHAO Xuan.Research on selective laser melting forming of aluminum matrix composites reinforced by SiC and TiB2[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 1-75. [36] 王卫东. 激光选区熔化成形SiC颗粒增强铝基复合材料工艺与强化机理研究[D]. 北京: 北京工业大学, 2019: 1-73. WANG Weidong.Study on the process and strength ening mechanism of SiC particle reinforced aluminum matrix composites by selective laser melting[D]. Beijing: Beijing University of Technology, 2019: 1-73. [37] LIU G, ZHANG G J, JIANG F, et al.Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J]. Nature Materials, 2013, 12(4): 344-350.