Abstract:Using TiN as N source, WC-TiC-TaC-8.0Co cemented carbide with β-Delamination gradient was prepared by one-step sintering with traditional powder metallurgy method. The microstructure of the alloy was observed and analyzed by means of scanning electron microscope, the effect of TiN addition on the microstructure, the thickness of β-layer, physical and mechanical properties was studied, and cutting test was also carried out. The results show that the density, coercive force, hardness and other physical properties of the alloy have no obvious variation with the increase of TiN content (mass fraction, the same below) in the range of 0-2.0%, but the thickness of β-layer obviously increases. With increasing TiN content from 0.5% to 2.0%, the corresponding thickness of cubic carbide free layer increases from 0 to 32.7 μm. The cutting test results show that the TiN content of 1.0%, cemented carbides has the excellent comprehensive properties of wear resistance and impact resistance after coating.
王雁洁, 刘咏, 杨新宇. TiN添加量对WC-TiC-TaC-8.0Co硬质合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(1): 35-39.
WANG Yanjie, LIU Yong, YANG Xinyu. Effect of TiN content on microstructure and properties of WC-TiC-TaC-8%Co cemented carbide. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 35-39.
[1] EKROTH M, FRYKHOLM R, LINDHOLM M, et al.Gradient zones in WC-Ti(C,N)-Co-based cemented carbides: Experimental study and computer simulations[J]. Acta Mater, 2000, 48(9): 2177-2185. [2] CHOY K L.Chmeical vapor deposition of coatings[J]. Prog Mater Sci, 2003, 48: 57-170. [3] 刘昌斌, 夏长清, 李艳鑫. 脱β层厚度对CVD涂层硬质合金性能的影响[J]. 硬质合金, 2011, 28(2): 83-87. LIU Changbin, XIA Changqin, LI Yanxin.Effect of cubic carbide free layer thickness on the properties of CVD coated carbide[J]. Cemented Carbide, 2011, 28(2): 83-87. [4] FRYKHOLM R, ANDREN H O.Development of the microstructure during gradient sintering of a cemnted carbide[J]. Material Chemistry Physics, 2001, 67: 203-208. [5] CHEN Limin, WALTER L, PETER E, et a1. Fundamentasl of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGCC)[J]. International Journal of Refractory Metals&Hard Materials, 2000, 18: 307-322. [6] 尹飞, 陈康华, 王社权. 基体的梯度结构对涂层硬质合金性能的影响[J]. 中南大学学报(自然科学版), 2005, 36(5): 776-779. YIN Fei, CHEN Kanghua, WANG Shequan.Influences of functionally graded structure of substrate on performance of coated cemented carbide[J]. Journal of Central South University (Natural Science Edition), 2005, 36(5): 776-779. [7] 邹伶俐. Ti(C,N)含量对硬质合金脱β层的形成及其CVD涂层刀具切削性能的影响[J]. 粉末冶金技术, 2015, 33(2): 116-120. ZOU Linli.Effect of Ti(C,N) content on the formation of gradient cemented carbid and its cutting performance of CVD-coated tools[J]. Powder Metallurgy Technolog, 2015, 33(2): 116-120. [8] 温光华, 贺跃辉, 王社权, 等. Ti(C,N)的碳氮比及粒度对脱β层梯度硬质合金的影响[J]. 硬质合金, 2009, 26(4): 201-205. WEN Guanghua, HE Yuehui, WANG Shequan, et al.Effect of composition and grain size of Ti(C,N) on the cobalt-rich layer of gradient cemented carbide[J]. Cemented Carbide, 2009, 26(4): 201-205. [9] 蔡俊, 丰平, 贺跃辉. 烧结工艺对梯度结构硬质合金梯度层组织和厚度的影响[J]. 硬质合金, 2007, 24(2): 91-95. CAI Jun, FENG Ping, HE Yuehui.The effect of sintering process on microstructure and thickness of graded layer of functionally graded cemented carbides[J]. Cemented Carbide, 2007, 24(2): 91-95. [10] 唐俊, 熊计, 郭智兴, 等. WC 粒度对梯度硬质合金组织和性能的影响[J]. 硬质合金, 2015, 32(6): 364-371. TANG Jun, XIONG Ji, GUO Zhixing, et al.Effect of WC grain size on microstructure and properties of gradient cemented carbide[J]. Cemented Carbide, 2015, 32(6): 364-371. [11] FRYKHOLM R, EKROTH M, JANSSON B, et al.A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides[J]. Acta Materials, 2003, 51: 1115-1121. [12] FRYKHOLM R, JANSSON B, ANDREN H O.The influnce of carbon content on formation of carbo-nitride free surface layers in cemented carbides[J]. International Journal of Refractory Metals and Hard Mateials, 2002, 20(5): 345-353. [13] 李广生. 超细WC-Co硬质合金的磁性能与金相分析[J]. 中国钨业, 2008, 23(2): 33-35. LI Guangsheng.Magnetic properties and metallographic of ultra-fine WC-Co cemented carbide[J]. China Tungsten Industry, 2008, 23(2): 33-35. [14] ROEBUCK B.Terminnology, testing, properties, imaging and models for fine grained hard materials[J]. International Journal of Refractory Metals & Hard Materials, 1995, 13(5): 265-279. [15] MCHUGHA P E, RIEDELB H.A liquid phase sintering model: Application to Si3N4 and WC-Co[J]. Acta Materialia, 1997, 45(7): 2995-3003. [16] ALLIBERT C H.Sintering features of cemented carbides WC-Co processed from fine powders[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19(1): 53-61. [17] EL-ESKANDARANY M S, MAHDAY A A. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations[J]. Journal of Alloys and Compounds, 2000, 312: 315-325. [18] BRISESECK M, BOHN M, LENGAUER W.Diffusion and solubility of Cr in WC[J]. Journal of Alloy and Componds, 2010, 489: 408 [19] SCHWARZKOPF M, EXNER H E, FISCHMEISTER H F. Kinetics of cornpositional modification of (W,Ti)C-WC-Co alloy surfaces[J]. Materials Science and Engineering A, 1988, 105/106: 225-231. [20] FRYKHOLM R, EKROTH M, JANSSON B, et al.Effect of cubic phase composition on gradient zone formation in cemented carbides[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19(4/6): 527-538. [21] 李竞荣. 硬质合金表面脱β层工艺研究[J]. 硬质合金, 2004, 21(4): 197-202. LI Jingrong.The technology study of the deplete cubic phase layer in cemented carbides[J]. Cemented Carbide, 2004, 21(4): 197-202.