Abstract:PTMP-PMAA modified Nano-WO3-x powder was obtained by hydrothermal method. The effects of pH value and concentration on photothermal properties of the nano-WO3-x powder materials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and photothermal property testing. The results show that the powders prepared by hydrothermal method are spherical nonintegral structure W17O48 with a particle size of less than 10 nm. The UV absorbance of the WO3-x material increases and the photothermal effect increases with decreasing the pH value or concentration of WO3-x. When pH 6.4 and mass concentration is 800 μg/mL, the temperature of WO3-x can rise nearly 19 ℃ in 5 minutes after photothermal conversion. Considering that the body temperature is 37 ℃ and the pH value of tumor site is between 6.0 and 6.5, nano-WO3-x powders at this concentration can be used in photothermal therapy and achieve the killing effect on tumor cells.
[1] 王维琼. 2016年中国恶性肿瘤发病和死亡分析[J]. 临床医药文献杂志: 电子版, 2017, 4(19): 3604-3604. WANG Weiqiong.Analysis of the incidence and death of malignant tumor in China in 2016[J]. Journal of Clinical Medical Literature: Electronic Edition, 2017, 4(19): 3604-3604. [2] 吴一龙. 恶性肿瘤治疗方法的发展及其认识论意义[J]. 医学与哲学, 1994(11): 9-11. WU Yilong.The development of cancer treatment and its epistemological significance[J]. Medicine and Philosophy, 1994(11): 9-11. [3] MELAMED J R, EDELSTEIN R S, DAY E S.Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy[J]. Acs Nano, 2015, 9(1): 6-11. [4] 宋雪娇, 刘庄. 有机纳米材料在肿瘤光热治疗中的应用[J]. 化学通报, 2015, 78(4): 292-298. SONG Xuejiao, LIU Zhuang.Organic nanomaterials for photothermal therapy of cancer[J]. Chemistry Bulletin, 2015, 78(4): 292-298. [5] 王新环, 韩秋森, 李婧影. 无种子法纳米金棒的制备及其对肿瘤细胞光热治疗效应研究[J]. 物理化学学报, 2014, 30(7): 1363-1369. WANG Xinhuan, HAN Qiusen, LI Jingying.Seedless synthesis of gold nanorods and applications in photo-thermal cancer therapy[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1363-1369. [6] 高振, 魏勇, 朱立新. 金纳米笼-量子点-Anti-AFP复合探针对肝癌细胞株的靶向光热治疗[J]. 中华肿瘤防治杂志, 2017, 24(11): 734-738. GAO Zhen, WEI Yong, ZHU Lixin.Targeted light heat treatment of gold nano cage-quantum dots-Anti-AFP composite probe on HepG-2 hepatocellular carcinoma cells[J]. Chinese Journal of Cancer Prevention and Treatment, 2017, 24(11): 734-738. [7] TERENTYUK G, PANFILOVA E, KHANADEEV V.Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo[J]. Nano Research, 2014, 7(3): 325-337. [8] CHANDRA D, SAITO K, YUI T.Crystallization of tungsten trioxide having small mesopores: highly efficient photoanode for visible-light-driven water oxidation[J]. Angew Chem, 2013, 52(48): 12606-12609. [9] LIU B J, ZHENG J, WANG J L.Ultrathin W18O49 nanowire assemblies for electrochromic devices[J]. Nano Lett, 2013, 13(8): 3589. [10] HORPRATHUM M, SRICHAIYAPERK T, SAMRANSUK- SAMER B.Ultra sensitive hydrogen sensor based on pt-decorated WO3 nanorods prepared by glancing-angle DC magnetron sputtering[J]. Acs Appl Mater Interfaces, 2014, 6(24): 22051-22060. [11] 钱静雯. 含钨化合物纳米结构的合成及光电化学性能研究[D]. 北京: 中国地质大学(北京), 2017. QIAN Jinwen.Synthesis and photoelectrochemical properties of tungsten containing nanostructures[D]. Beijing: China University of Geosciences (Beijing), 2017. [12] 谢骥, 谢祯芳, 胡校兵. 基于纳米WO3半导体材料的NO2气体传感器的研究进展[J]. 陶瓷学报, 2016, 37(6): 593-602. XIE Ji, XIE Zhenfang, HU Xiaobing.The research progress of NO2 gas sensor based on the nano-WO3 semiconductor materials[J]. Journal of Ceramics, 2016, 37(6): 593-602. [13] GUO C, YIN S, YAN M.Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties[J]. Inorg Chem, 2012, 43(28): 4763-4771. [14] LIU J, MARGEAT O, DACHRAOUI W.Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity[J]. Adv Funct Mater, 2014, 24(38): 6029-6037. [15] 申永奇. 氧化钨纳米材料的可控合成及光电性能研究[D]. 武汉: 华中科技大学, 2013. SHEN Yongqi.Controllable synthesis and photoelectric properties of tungsten oxide nanomaterials[D]. Wuhan: Huazhong University of Science and Technology, 2013. [16] 郝金玲, 姜春萍, 张艳辉. 电沉积WO3薄膜及其光电性能的表征[J]. 化学研究与应用, 2010, 22(5): 550-553. HAO Jinling, JIANG Chunping, ZHANG Yanhui.Electro- deposition and characterization of photoelectrochemical properties of WO3 thin films[J]. Chemical Research and Application, 2010, 22(5): 550-553. [17] MAJEED M I, GUO J, YAN W.Preparation of magnetic iron oxide nanoparticles (MIONs) with Improved Saturation magnetization using multifunctional polymer ligand[J]. Polymers, 2016, 8(11): 392. [18] 黄鑫. 多功能聚合物配体制备荧光纳米金颗粒及其生物应用[D]. 武汉: 华中科技大学, 2011. HUANG Xin.Preparation of fluorescent gold nanoparticles by multifunctional polymer ligands and their biological applications[D]. Wuhan: Huazhong University of Science and Technology, 2011. [19] 赵洁, 姚秉华, 贺友涛. 简单水热法制备纳米WO3及其光催化性能[J]. 水处理技术, 2012, 38(10): 42-46. ZHAO Jie, YAO Binghua, HE Youtao.Simple hydrothermal synthesis of nanosized WO3 and its photocatalytic activity[J]. Technology of Water Treatment, 2012, 38(10): 42-46. [20] 曾慧琳, 王姗姗, 符旭东. pH敏感脂质体在药物传递系统中的应用[J]. 医药导报, 2014, 33(3): 348-351. ZENG Huilin,WANG Shanshan, FU Xudong.Application of pH sensitive liposomes in drug delivery system[J]. Herald of Medicine, 2014, 33(3): 348-351. [21] 刘子传, 郑经堂, 赵东风. TiO2禁带宽度和光吸收系数对其光催化性能的影响[J]. 发光学报, 2012, 33(12): 1329-1334. LIU Zichuan, ZHENG Jingtang, ZHAO Dongfeng.Effects of forbidden bandwidth and optical absorption coeffcient on photocatalytic ability of TiO2[J]. Chinese Journal of Luminescence, 2012, 33(12): 1329-1334. [22] TOH Y R, YU P, WEN X.Induced pH-dependent shift by local surface plasmon resonance in functionalized gold nanorods[J]. Nanoscale Research Letters, 2013, 8(1): 103-103. [23] ZHU J, LI W, ZHU M.Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor[J]. Aip Advances 2014, 4(3): 3722. [24] BALITSKII O A, MOSZYŃSKI D, ABBAS Z. Aqueous processable WO3-x nanocrystals with solution tunable localized surface plasmon resonance[J]. Rsc Advances 2016, 6(64): 59050-59054.