Abstract:Using TiC powder, Mo powder, WC powder, and Ni powder as raw materials, 0, 1%, 2%, and 3% (mass fraction) of C powder were respectively added to prepare TiC-WC-Ni-Mo cermets, and the effects of C additive amount on the microstructure and properties of TiC based cermets were studied. The results show that the TiC-based cermets shows a typical black-core and grey-rim structure the main component of the core is TiC, and the rim is composed of Ti, W, Mo and other elements. With the increase of C additive amount, the grain size of the cermets decreases, but the porosity increases, the rim becomes thinner, the hardness of the material decreases, and the bending strength increases first and then decreases. When the C additive amount is 2%, the bending strength of the material reaches the maximum value of 1 061 MPa, and the hardness is 14.29 GPa.
姚松松, 成会朝, 范景莲, 刘涛. 碳添加量对TiC基金属陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(6): 569-574.
YAO Songsong, CHENG Huichao, FAN Jinglian, LIU Tao. Effects of carbon additive amount on the microstructure and properties of TiC-based cermets. Materials Science and Engineering of Powder Metallurgy, 2018, 23(6): 569-574.
[1] MARI D, GONSETH D R.A new look at carbide tool life[J]. Wear, 1993, 165(1): 9-17. [2] MOSKOWITZ D, TERNER L L.TiN improves properties of titanium carbonitride-base materials[J]. International Journal of Refractory Metals & Hard Materials, 1986(5): 13-16. [3] ETTMAYER P, KOLASKA H, LENGAUER W, et al.Ti(C,N) cermets—metallurgy and properties[J]. International Journal of Refractory Metals & Hard Materials, 1995, 13(6): 343-351. [4] 尤绍军, 严枫, 陈文君, 等. 轴承零件的选材及热处理[J]. 金属热处理, 2004, 29(9): 26-31. YOU Shaojun, YAN Feng, CHEN Wenjun, et al.Materials selection and heat treatment of bearing parts[J]. Heat Treatment of Metals, 2004, 29(9): 26-31. [5] LIU Ning, YIN Weihai, ZHU Longwei.Effect of TiC/TiN powder size on microstructure and properties of Ti(C,N)-based cermets[J]. Materials Science & Engineering A, 2007, 445(6): 707-716. [6] 熊计, 沈保罗. 超细TiC0.7N0.3金属陶瓷的烧结工艺研究[J]. 粉末冶金技术, 2004, 22(3): 36-39. XIONG Ji, SHENG Baoluo.Research on sintering process of superfine TiC0.7N0.3 cermet[J]. Powder Metallurgy Technology, 2004, 22(3): 36-39. [7] CHEN Xiao, XIONG Weihao, QU Jun, et al.Microstructure and mechanical properties of (Ti,W,Ta)C-xMo-Ni cermets[J]. International Journal of Refractory Metals & Hard Materials, 2012, 31(3): 56-61. [8] DONG Guangbiao, XIONG Ji, CHEN Jianzhong, et al.Effect of WC on the microstructure and mechanical properties of nano Ti(C,N)-based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2012, 35(1): 159-162. [9] 高凌燕, 周书助, 伍小波, 等. 碳含量对超细Ti(C,N)基金属陶瓷的结构及性能的影响[J]. 包装学报, 2013, 5(3): 10-15. GAO Lingyan, ZHOU Shuzhu, WU Xiaobo, et al.Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C,N)-based cermets[J]. Packaging Journal, 2013, 5(3): 10-15. [10] 陈霞, 李晨辉. 纳米TiN复合Ti(C,N)基金属陶瓷烧结过程中的相演变[J]. 硬质合金, 2008, 25(2): 85-90. CHEN Xia, LI Chenhui.Phase evolution of nanometer TiN contained Ti(C,N)-based cermet during sintering[J]. Cemented Carbide, 2008, 25(2): 85-90. [11] CHAO Sheng, LIU Ning, YUAN Yupeng, et al.Microstructure and mechanical properties of ultrafine Ti(CN)-based cermets fabricated from nano/submicron starting powders[J]. Ceramics International, 2005, 31(6): 851-862. [12] ZHAO Yijie, ZHENG Yong, ZHOU Wei, et al.Effect of carbon addition on the densification behavior, microstructure evolution and mechanical properties of Ti(C,N)-based cermets[J]. Ceramics International, 2016, 42(4): 5487-5496. [13] LI Pingping, YE Jinwen, LIU Ying, et al.Study on the formation of core-rim structure in Ti(CN)-based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2012, 35(1): 27-31. [14] 黄培云. 粉末冶金原理 [M]. 第2版. 北京: 冶金工业出版社, 1997. HUANG Peiyun.Principle of Powder Metallurgy[M]. 2nd ed. Beijing: Metallurgical Industry Press, 1997. [15] 刘宁. TiC基金属陶瓷的组织性能及发展[J]. 金属陶瓷, 1992(3): 166-172. LIU Ning.The microstructure, mechanical properties and development of TiC-based cermets[J]. Cemented Carbide, 1992(3): 166-172.