Experimental determination and thermodynamic assessment of the Zr-Cr-Y ternary system
QIAO Hui1,2, HU Biao1,2, ZENG Gang1,2, JIN Chenggang1,2, GAO Jian1,2
1. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; 2. Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health,Huainan 232001, China
Abstract:The phase equilibria of the Zr-Cr-Y system was investigated by combination of key experiments and CALPHAD (calculation of phase diagrams) methods. Eight ternary alloys were prepared to determine the isothermal sections of the Zr-Cr-Y system at 1 000, 900, 800 and 600 ℃ by means of X-ray diffraction (XRD) and scanning electron microscope with energy dispersive X-ray spectroscopy (SEM/EDS). The results show that there are three-phase regions, i.e., BCC(Cr)+HCP(Y)+αCr2Zr, BCC(Zr)+HCP(Y)+αCr2Zr and HCP(Zr)+HCP(Y)+αCr2Zr in this system. Based on the experimental equilibria data obtained in the present work, thermodynamic modeling of the Zr-Cr-Y ternary system was performed by the CALPHAD method. A set of accurate thermodynamic parameters of the Zr-Cr-Y system were obtained. The calculated results are in good agreement with most of the reliable experimental data.
[1] 周军, 樊湘芳, 丰振东, 等. Zr4合金表面多弧离子镀TiAlSiN涂层的微观形貌与性能[J]. 粉末冶金材料科学与工程, 2017, 22(5): 687-692. ZHOU Jun, FAN Xiangfang, FENG Zhendong, et al.Microscopic morphology and properties of TiAlSiN coating on Zr4 alloy surface by multi-arc ion plating[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(5): 687-692. [2] 谭瑞轩, 王洪磊, 余金山, 等. 锆合金包壳管内壁SiC涂层的PECVD制备与性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 206-212. TAN Ruixuan, WANG Honglei, YU Jinshan, et al.PECVD preparation and properties of SiC coatings on the inner wall of zirconium alloy-clad tubes[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 206-212. [3] 赵毅, 王栋, 吴江栀, 等. Zr-Nb系合金氧化膜的相图计算与热力学分析[J]. 上海金属, 2021, 43(6): 103-109. ZHAO Yi, WANG Dong, WU Jiangzhi, et al.Phase diagram calculation and thermodynamic analysis of oxidation film of Zr-Nb alloys[J]. Shanghai Metal, 2021, 43(6): 103-109. [4] 张浩, 刘珠, 赖平, 等. Zr-Nb系合金在360 ℃/20 MPa溶氧水中的腐蚀行为[J]. 腐蚀与防护, 2021, 42(3): 1-7, 37. ZHANG Hao, LIU Zhu, LAI Ping, et al.Corrosion behavior of Zr-Nb alloys in 360 ℃/20 MPa dissolved oxygen water[J]. Corrosion and Protection, 2021, 42(3): 1-7, 37. [5] SABOL G P.ZIRLO™: an alloy development success[J]. Journal of ASTM International, 2005, 2(2): 1-22. [6] LIU W Q, LI Q, ZHOU B X, et al.Effect of heat treatment on the microstructure and corrosion resistance of a Zr-Sn-Nb-Fe-Cr alloy[J]. Journal of Nuclear Materials, 2005, 341(2/3): 97-102. [7] SHISHOV V N, PEREGUD M M, NIKULINA A V, et al.Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys[J]. Journal of ASTM International, 2008, 5(3): 1-18. [8] YANG J, STEGMAIER U, TANG C, et al.High temperature Cr-Zr interaction of two types of Cr-coated Zr alloys in inert gas environment[J]. Journal of Nuclear Materials, 2021, 547: 152806. [9] SIDELEV D V, SYRTANOV M S, RUCHKIN S E, et al.Protection of Zr alloy under high-temperature air oxidation: a multilayer coating approach[J]. Coatings, 2021, 11(2): 227. [10] ARIAS D, ABRIATA J P.The Cr-Zr (chromium-zirconium) system[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(3): 237-244. [11] PAVLŮ J, VŘEŠT’ÁL J, ŠOB M. Stability of Laves phases in the Cr-Zr system[J]. Calphad, 2009, 33(2): 382-387. [12] LU H J, WANG W B, ZOU N, et al.Thermodynamic modeling of Cr-Nb and Zr-Cr with extension to the ternary Zr-Nb-Cr system[J]. Calphad, 2015, 50(3): 134-143. [13] PALENZONA A, CIRAFICI S.The Y-Zr (yttrium-zirconium) system[J]. Journal of Phase Equilibria, 1991, 12(4): 485-489. [14] BU M J, WAND P S, XU H H, et al.Experimental investigation and thermodynamic modeling of the Zr-Y system[J]. Journal of Mining and Metallurgy B: Metallurgy, 2010, 46(2): 181-192. [15] TAYLOR A, HICKAM W M, DOYLE N J.Solid solubility limits of Y and Sc in the elements W, Ta, Mo, Nb, and Cr[J]. Journal of the Less Common Metals, 1965, 9(3): 214-232. [16] LOVE B.The Metallurgy of Yttrium and the Rare Earth Metals: Phase Relationships. pt. 2. Mechanical Properties[M]. America: Wright Air Development Division, Air Research and Development Command, US Air Force, 1960: 60-74. [17] XU H X, CHEN M, CHENG K M, et al.Thermodynamic modeling of the chromium-yttrium-oxygen system[J]. Calphad, 2019, 64(1): 1-10. [18] VENKATRAMAN M, NEUMANN J P.The Cr-Y (chromium- yttrium) system[J]. Bulletin of Alloy Phase Diagrams, 1985, 6(5): 429-431. [19] TEREKHOVA V F, MARKOVA I A, SAVITSKII E M.Equilibrium diagram of the chromium-yttrium system[J]. Russian Journal of Inorganic Chemistry, 1961, 3(6): 641-642. [20] OLCAMOTO H.Cr-Y (chromium-yttrium)[J]. Journal of Phase Equilibria, 1992, 13(1): 100-101. [21] CHAN W, GAO M C, DOĞAN Ö N, et al. Thermodynamic assessment of Cr-rare earth systems[J]. Journal of Phase Equilibria and Diffusion, 2009, 30(6): 578-586. [22] DINSDALE A T.SGTE data for pure elements[J]. Calphad, 1991, 15(4): 317-425. [23] REDLICH O, KISTER A T.Algebraic representation of thermodynamic properties and the classification of solutions[J]. Industrial and Engineering Chemistry, 1948, 40(2): 345-348. [24] HILLERT M, STAFFANSSON L I.Regular-solution model for stoichiometric phases and ionic melts[J]. Acta Chemica Scandinavica, 1970, 24(10): 3618-3626. [25] SUNDMAN B, ÅGREN J.A regular solution model for phases with several components and sublattices, suitable for computer applications[J]. Journal of Physics and Chemistry of Solids, 1981, 42(4): 297-301.