|
|
Influence of densification temperature and interface type on the structure and mechanical properties of SiCf/SiC Mini composites |
WANG Duo1, CHEN Zhaoke1, HE Zongbei2, ZHANG Ruiqian2, XIONG Xiang1 |
1. Science and Technology on High Strength Materials Laboratory, Central South University, Changsha 410083, China; 2. Science and Technology on Reactor Fuel and Materials Laboratory,Nuclear Power Institute of China, Chengdu 610213, China |
|
|
Abstract Pyrolytic carbon (PyC) interface and (PyC/SiC)3 multi-layer interfaces were introduced into SiC fiber bundles by chemical vapour infiltration (CVI). After densification of SiC matrix in SiC fiber bundles containing PyC interface at 1 050 ℃ and 1 250 ℃, and in SiC fiber bundles containing (PyC/SiC)3 multilayer interface at 1 050 ℃, SiCf/SiC Mini composites with different interface types and different matrix structures were obtained. The microstructure and tensile fracture behavior of the as-prepared SiCf/SiC minicomposites were studied. The results show that a clear interface with the thickness of about 300 nm is introduced successfully between the inner fiber and the SiC matrix. After densification at 1 050 ℃, the tensile strength of the SiCf/SiC Mini composite with PyC interface is 174 MPa, with the debonding mainly occurring between the SiC matrix and the interface. While the tensile strength of SiCf/SiC Mini composites with (PyC/SiC)3 multilayer interface reaches 540 MPa, with the debonding mainly occurring between the sublayer of the multilayer. As the densification temperature increases, the SiC matrix of the SiCf/SiC Mini composites changes from fine, porous needle-like to coarse, dense lamellar, with the grain size and crystallinity increaseing significantly. The tensile strength of the composites obtained at 1 250 ℃ is 309 MPa, showing typical brittle fracture characteristics.
|
Received: 14 February 2022
Published: 14 September 2022
|
|
|
|
|
[1] NASLAIN R.Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science & Technology, 2004, 64(2): 155-170. [2] KATOH Y, SNEAD L L.Silicon carbide and its composites for nuclear applications-historical overview[J]. Journal of Nuclear Materials, 2019, 526: 151849. [3] SOMMERS A, WANG Q, HAN X, et al.Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review[J]. Applied Thermal Engineering, 2010, 30(11): 1277-1291. [4] IVEKOVIC A, NOVAK S, DRAZIC G, et al.Current status and prospects of SiCf/SiC for fusion structural applications[J]. Journal of the European Ceramic Society, 2013, 33(10): 1577-1589. [5] 尚新渊, 张爱民. 碳化硅复合材料包壳燃料棒在LOCA事故中的特性研究[J]. 核技术, 2019, 42(8): 60-70. SHANG Xinyuan, ZHANG Aimin.Study on LOCA accident of fuel rod with SiCf/SiC cladding[J]. Nuclear Techniques, 2019, 42(8): 60-70. [6] TERRANI K A.Accident tolerant fuel cladding development: Promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. [7] 齐哲, 郎旭东, 赵春玲, 等. SiC/SiC复合材料失效行为研究进展[J]. 航空材料学报, 2021, 41(3): 25-35. QI Zhe, LANG Xudong, ZHAO Chunling, et al.Research progress on the failure behavior of SiC/SiC composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 25-35. [8] 邹芹, 周鑫, 李艳国, 等. SiC复合材料的研究进展与展望[J].中南大学学报(自然科学版), 2020, 51(11): 3220-3232. ZHOU Qin, ZHOU Xin, LI Yanguo, et al.Research progress and prospect of SiC composites[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3220-3232. [9] 赵爽, 杨自春, 周新贵. 不同界面SiC/SiC复合材料的断裂行为研究[J]. 无机材料学报, 2016, 31(1): 58-62. ZHAO Shuang, YANG Zichun, ZHOU Xingui.Fracture behavior of SiC/SiC composites with different interfaces[J]. Journal of Inorganic Materials, 2016, 31(1): 58-62. [10] 刘海韬, 程海峰, 王军, 等. SiCf/SiC复合材料界面相研究进展[J]. 材料导报, 2010, 24(1): 10-14. LIU Haitao, CHENG Haifeng, WANG Jun, et al.Study on the Interphase of the continuous SiC fiber reinforced SiC composites[J]. Materials Reports, 2010, 24(1): 10-14. [11] 陈智勇, 刘建寿, 徐颖强, 等. 碳纤维增韧碳化硅陶瓷基复合材料界面相的研究进展[J]. 陶瓷学报, 2019, 40(6): 701-709. CHEN Zhiyong, LIU Jianshou, XU Yingqiang, et al.Research progress on the interphase of C/SiC composites[J]. Journal of Ceramics, 2019, 40(6): 701-709. [12] 杨金华, 吕晓旭, 焦健. 碳化硅陶瓷基复合材料界面层技术研究进展[J]. 航空制造技术, 2018, 61(11): 79-87. YANG Jinhua, LÜ Xiaoxu, JIAO Jian.Progress in interphase technology of silicon carbide matrix composites[J]. Aeronautical Manufacturing Technology, 2018, 61(11): 79-87. [13] 徐永东, 张立同, 成来飞, 等. CVI法制备连续纤维增韧陶瓷基复合材料[J]. 硅酸盐学报, 1995(3): 319-326. XU Yongdong, ZHANG Litong, CHENG Laifei, et al.Fiber reinforced ceramic matrix composites prepared by chemical vapor infiltration[J]. Journal of the Chinese Ceramic Society, 1995(3): 319-326. [14] LIU Y, CHAI N, QIN H, et al.Tensile fracture behavior and strength distribution of SiCf/SiC composites with different SiBN interface thicknesses[J]. Ceramics International, 2015, 41(1): 1609-1616. [15] ZHAO S, ZHOU X, YU J, et al.Mechanical properties and in situ crack growth observation of SiC/SiC composites[J]. Ceramics International, 2014, 40(5): 7481-7485. [16] DAI J, WANG Y, XU Z, et al.Effect of BN/SiC interfacial coatings on the tensile properties of SiC/SiC minicomposites fabricated by PIP[J]. Ceramics International, 2020, 46(16): 25058-25065. [17] KIM D, LEE H J, JANG C, et al.Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes[J]. Journal of Nuclear Materials, 2017, 492: 6-13. [18] HAYAKAWA K, KISHIMOTO H, PARK J S, et al.Microstructure and property changes of SiC fiber under thermal and ion irradiation environments[J]. IOP Conference, 2011, 18(16): 162009-162014. [19] LI Z, CAO Y, LIU W, et al.Enhanced irradiation resistance and thermal conductivity of SiC induced by the addition of carbon under Au2+ ion irradiation[J]. Ceramics International, 2018, 44(7): 8521-8527. [20] 刘荣军, 张长瑞, 刘晓阳, 等. CVD 过程中温度对 SiC 涂层沉积速率及组织结构的影响[J]. 航空材料学报, 2004, 24(4): 22-26. LIU Rongjun, ZHANG Changrui, LIU Xiaoyang, et al.The effects of deposition temperature on the depositon rates and structures of CVD SiC coatings[J]. Journal of Aeronautical Materials, 2004, 24(4): 22-26. [21] 于海蛟. 多层界面制备、表征及其对SiCf/SiC复合材料性能的影响[D]. 国防科学技术大学, 2011: 1-122. YU Haijiao.Fabrication and characterizations of multilayer interfaces and their effects on bulk properties of the SiCf/SiC composites[D]. National University of Defense Technology, 2011: 1-122. [22] SHINOZAKI S S, SATO H.Microstructure of SiC prepared by chemical vapour deposition[J]. American Ceramic Society, 1978, 161(6): 425-429. |
|
|
|