|
|
Computational meso-mechanical model and mechanical property of short carbon fiber reinforced copper matrix composites |
HE Donglang, FANG Huachan, LI Yuxing, LI Jinwei |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract For the short carbon fiber reinforced copper matrix composites (CSf/Cu) prepared by powder metallurgy, a model was established to analyze the tensile damage evolution, fracture mechanical behavior and the influence of weak interface on mechanical properties of composites. The results show that the composites can be divided into elastic stage, plastic hardening stage, damage initiation stage, and damage evolution stage. The stress concentration at the fiber end causes the debonding of the end interface, the damage evolution of the axial interface and the fiber bridging. The damage of the matrix and the accompanying interface are the main fracture mechanism of the material. When the fiber length is greater than 60 μm, the axial stress of the fiber presents a “w” shape, and the fiber has a strong bearing capacity. When the fiber length is 20 μm, the fiber has almost no bearing capacity. The higher the load on the fiber, the easier it is to cause interfacial damage. With increasing fiber length from 20 μm to 140 μm, the strength of the composite decreases from 146 MPa to 102 MPa.
|
Received: 08 March 2022
Published: 14 September 2022
|
|
|
|
|
[1] ZC A, HCF A, JMZ A, et al.Effect of carbon type and morphology on the microstructure and properties of carbon/ copper composites[J]. Wear, 29(5): 460-461. [2] LANCIONI G, ALESSI R.Modeling micro-cracking and failure in short fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 2019, 137: 103854. [3] PIKE M, HICKMAN M, OSKAY C.Interactions between multiple enrichments in extended finite element analysis of short fiber reinforced composites[J]. International Journal for Multiscale Computational Engineering, 2015, 13(6): 83-87. [4] PIKE M G, OSKAY C.Modeling random short nanofiber-and microfiber-reinforced composites using the extended finite- element method[J]. Journal of Nanomechanics & Micromechanics, 2014, 5(1): 1-11. [5] PIKE M G, OSKAY C.Three dimensional modeling of short fiber reinforced composites with the extended finite element method[J]. Journal of Engineering Mechanics, 2019, 142(11): 1-12. [6] YAVAS D, ZHANG Z, LIU Q, et al.Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing[J]. Composites Part B: Engineering, 2020, 204: 1-26. [7] MONDALI M, ABEDIAN A.An analytical model for stress analysis of short fiber composites in power law creep matrix[J]. International Journal of Non-Linear Mechanics, 2013, 57: 39-49. [8] GAO J, YANG X, HUANG L H.Numerical prediction of mechanical properties of rubber composites reinforced by aramid fiber under large deformation[J]. Composite Structures, 2018, 201: 29-37. [9] TIAN J, ZHONG S Y, SHI Z Q.Finite element analysis of creep behavior of AZ91D magnesium matrix composites reinforced with aluminum silicate short fibers[J]. Advanced Materials Research, 2012, 568(11): 311-314. [10] YANG Q S, QIN Q H.Fiber interactions and effective elasto- plastic properties of short-fiber composites[J]. Composite Structures, 2001, 54(4): 523-528. [11] HARPER L T, QIAN C, TURNER T A, et al.Representative volume elements for discontinuous carbon fibre composites. Part 1: boundary conditions[J]. Composites Science and Technology, 2012, 72(2): 225-234. [12] HARPER L T, QIAN C, TURNER T A, et al.Representative volume elements for discontinuous carbon fibre composites. Part 2: determining the critical size[J]. Composites Science and Technology, 2012, 72(2): 204-210. [13] DEMIRAL M, TANABI H, SABUNCUOGLU B.Experimental and numerical investigation of transverse shear behavior of glass-fibre composites with embedded vascular channel[J]. Composite Structures, 2020, 252(2): 1-28. [14] LECLERC W, KARAMLAN-SURVILLE P, VIVET A.Influence of morphological parameters of a 2D random short fibre composite on its effective elastic properties[J]. Mechanics & Industry, 2013, 14(5): 361-365. [15] XIANG L, BAI Y, ALGARNI M, et al.Study on the strengthening mechanisms of Cu/CNT nano-composites[J]. Materials Science & Engineering A, 2015, 645: 347-356. [16] REDDY B, NARAYANA K B.A comparative study of analytical and numerical evaluation of elastic properties of short fiber composites[J]. IOP Conference Series: Materials Science and Engineering, 2016, 149: 012089. [17] LEI Y, YAN Y, LIU Y, et al.Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science & Technology, 2012, 72(15): 1818-1825. [18] YU T, TENG J G, WONG Y L, et al.Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model[J]. Engineering Structures, 2010, 32(3): 665-679. [19] COX H L.The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1951, 3(3): 72-73. |
|
|
|