|
|
Effects of temperature on microstructure and mechanical properties of Mg-6Zn-xMn alloy prepared by semi-solid powder moulding |
YANG Shanghui, LUO Xia, LI Mingyu, LIU Jiaxing, LÜ Chunyang, HUANG Jing, BAO Feifei, HUANG Bensheng |
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China |
|
|
Abstract Using metal magnesium, zinc, manganese powders as raw materials, Mg-6Zn-xMn (x=0.5%, 1.0%) magnesium alloys were prepared at a temperature of 540-600 ℃ by semi-solid powder moulding method. The effects of forming temperature on the microstructures (phase and grain size), mechanical properties (compressive strength and microhardness), and corrosion resistance of the alloys were investigated by means of optical microscope, X-ray diffractometer, scanning electron microscope, microhardness tester, universal testing machine, and electrochemical test. The results show that with the increase of forming temperature, the relative density and average grain size increase, while the microhardness and compressive strength decrease. With the forming temperature increasing from 540 ℃ to 600 ℃, the compressive strength of Mg-6Zn-0.5Mn and Mg-6Zn-1.0Mn alloys decreases from 382.8 MPa and 372.1 MPa to 348.9 MPa and 353.1 MPa (decreasing by about 8.9% and 5.4%, respectively), mainly as the forming temperature increases, more oxide inclusions are generated at the grain boundaries, thereby reducing the compressive strength of the alloy. The microhardness (HV) of the alloys is above 95.1, and Mg-6Zn-0.5/1.0Mn alloy prepared at 600 ℃ has the lowest degradation rate of 0.263 mm/a and 0.183 mm/a, respectively.
|
Received: 12 April 2022
Published: 14 September 2022
|
|
|
|
|
[1] YANG Y W, HE C X, E D Y, et al. Mg bone implant: features, developments and perspectives[J]. Materials and Design, 2020, 185(5): 259-312. [2] 赵维康. 骨科新型镁合金(Mg-1.5Sn-xZn)材料制备、生物活性及抗菌性研究[D]. 重庆: 重庆医科大学, 2020: 18-27. ZHAO Weikang.Study on preparation, bioactivity and antibacterial of new orthopedic magnesium alloy (Mg-1.5Sn-xZn) abstract[D]. Chongqing: Chongqing Medical University, 2020:18-27. [3] JIA Q G, ZHANG W X, SUN Y, et al.Microstructure and mechanical properties of as-cast and extruded biomedical Mg-Zn-Y-Zr-Ca alloy at different temperatures[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 515-525. [4] WANG J, PENG F, WU X L, et al.Biocompatibility and bone regeneration of PEO/Mg-Al LDH-coated pure Mg: an in vitro and in vivo study[J]. Science China Materials, 2021, 64(2): 460-473. [5] 林正捷, 赵颖, 张志雄, 等. 医用可降解镁合金抗菌性、溶血以及生物相容性的研究进展[J]. 稀有金属材料与工程, 2018, 47(1): 403-408. LIN Zhengjie, ZHAO Ying, ZHANG Zhixiong, et al.Antibacterial properties, hemolysis and biocompatibility of biodegradable medical magnesium alloys[J]. Rare Metal Materials and Engineering, 2018, 47(1): 403-408. [6] JIANG W Y, WANG J F, LIU Q S, et al.Low hydrogen release behavior and antibacterial property of Mg-4Zn-xSn alloys[J]. Materials Letters, 2019, 241(15): 88-91. [7] SIVAPRAGASH M, KUMARADHAS P, VETTIVEL S C, et al.Optimization of PVD process parameter for coating AZ91D magnesium alloy by taguchi grey approach[J]. Journal of Magnesium and Alloys, 2018, 6(2): 171-179. [8] OLAJIRE A A.Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures[J]. Journal of Molecular Liquids, 2018, 269(53): 572-606. [9] MOSTAFIZU R, LI Y C, CUIE W.HA coating on Mg alloys for biomedical applications: a review[J]. Journal of Magnesium and Alloys, 2020, 8(3): 929-943. [10] MUSSATTO A, GROARKE R, NEILL A, et al.Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing[J]. Additive Manufacturing, 2021, 38(6): 1-11. [11] NIU X M, SHEN H Y, XU G H, et al.Effect of aluminium content and processing parameters on the microstructure and mechanical properties of laser powder-bed fused Mg-Al(0, 3, 6, 9wt.%) powder mixture[J]. Rapid Prototyping Journal, 2019, 25(4): 744-751. [12] SU C, WANG J F, LI H Y, et al.Binder-jetting additive manufacturing of Mg alloy densified by two-step sintering process[J]. Journal of Manufacturing Processes, 2021, 72(3): 71-79. [13] SALEHI M, LI S H, GUPTA M, et al.Rapid densification of additive manufactured magnesium alloys via microwave sintering[J]. Additive Manufacturing, 2020, 7(1): 426-434. [14] 孔祥吉, 郝权, 曹勇家. 金属粉末微注射成形技术的发展[J]. 粉末冶金工业, 2012, 22(5): 53-62. SHUN Xiangji, HAO Quan, CHAO Yongjia.Review of the present status of micro MIM[J]. Powder Metallurgy Industry, 2012, 22(5): 53-62. [15] 贺毅强, 陈振华, 陈志钢, 等. 金属粉末注射成形的原理与发展趋势[J]. 材料科学与工程学报, 2013, 6(2): 317-322. HE Yiqiang, CHEN Zhenhua, CHEN Zhigang, et al.Metal injection molding: principle and development[J]. Journal of Materials Science and Engineering, 2013, 6(2): 317-322. [16] 邱玮, 余容众, 周兵, 等. 铸造镁合金晶粒细化研究进展[J]. 铸造技术, 2020, 41(11): 1077-1087. QIU Wei, YU Rongzhong, ZHOU Bing, et al.Research progress on grain refinement of cast magnesium alloy[J]. Casting Technology, 2020, 41(11): 1077-1087. [17] 翟春泉, 曾小勤, 丁文江, 等. 镁合金的开发与应用[J]. 机械工程材料, 2001(1): 6-10. ZHAI Chunquan, ZENG Xiaoqin, DING Wenjiang, et al.Development and application of magnesium alloys[J]. Mechanical Engineering Materials, 2001(1): 6-10. [18] SHI F, WANG C Q, ZHANG Z M.Microstructures, corrosion and mechanical properties of as-cast Mg-Zn-Y-(Gd) alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2172-2180. [19] LUO X, WU M, FANG C, et al.The current status and development of semi-solid powder forming (SPF). JOM, 2019, 71(12): 4349-4361. [20] LUO X, LI M Y, REN J, et al.Deformation micro-mechanism and constitutive analysis behind the semisolid powder compression of medical Mg-Zn alloy[J]. JOM, 2022, 74(3): 899-908. [21] 罗霞. 半固态粉末轧制7050铝合金带材的工艺及过程原理研究[D]. 广州: 华南理工大学, 2015: 4-12. LUO Xia.Study on the process and principle of semi-solid powder rolling for preparation of 7050 aluminum strip[D]. Guangzhou: South China University of Technology, 2015: 4-12. [22] 任俊, 罗霞, 蔡晓文, 等. 半固态粉末压缩医用Mg-6Zn合金过程数值模拟[J]. 粉末冶金工业, 2021, 32(3): 1-12. REN Jun, LUO Xia, CAI Xiaowen, et al.Numerical simulation of semi-solid powder compression process for medical Mg-6Zn alloy[J]. Powder Metallurgy Industry, 2021, 32(3): 1-12. [23] LUO X, YANG S H, LI M Y, et al.The properties evolution of medical Mg-Zn alloys prepared by semi-solid powder moulding[J]. Transactions of the Indian Institute of Metals, 2021, 74(12): 3063-3073. [24] AMIRNEJAD M, RAJABI M, MOTAVALLI A.Effect of addition of Si on microstructure, mechanical properties, bio-corrosion and cytotoxicity of Mg-6Al-1Zn alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9): 1755-1762. [25] ZHANG Y P, HUANG Y D, FEYERABEND F, et al.Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions[J]. Acta Biomaterialia, 2020, 121(5): 695-712. [26] GU X N, ZHENG Y F, CHENG Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2008, 30(4): 484-498. [27] 赖林. Mg-Mn-Zn系镁合金组织与性能研究[D]. 北京: 北京有色金属研究总院, 2017: 84-108. LAI Lin.The research of Mg-Mn-Zn series magnesium alloy on the structure and properties[D]. Beijing: Beijing General Research Institute for Nn-ferrous Metals, 2017: 84-108. [28] YAO X Y, TANG J C, ZHOU Y H, et al.Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: corrosion behaviour, microhardness and biocompatibility[J]. Journal of Magnsium and Alloys, 2021, 9(6): 2155-2168. [29] 周世杰, 刘丽, 李智, 等. Mg-Ca-Mn、Mg-Ca-Sr三元生物镁合金制备与研究[J]. 材料导报, 2013, 27(20): 7-9. ZHOU Shijie, LIU Li, LI Zhi, et al.Research and preparation of Mg-Ca-Sr and Mg-Ca-Mn ternary biological alloy[J]. Material Review, 2013, 27(20): 7-9. [30] 阮建明, CRANT M H, 黄伯云. 金属毒性研究[J]. 粉末冶金材料科学与工程, 2001, 14(6): 960-965. RUAN Jianming, CRANT M H, HUANG Boyun.Approach of metal cytotoxicity[J]. Powder Metallurgy Materials Science and Engineering, 2001, 14(6): 960-965. [31] 赵倩. TNZS基生物材料的体外组织相容性[J]. 粉末冶金材料科学与工程, 2020, 25(4): 352-357. ZHAO Qian.Ln vitro histocompatibility of TNZS-based biomaterials[J]. Powder Metallurgy Materials Science and Engineering, 2020, 25(4): 352-357. [32] ZANDER D, ZUMDICK N A.Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corrosion Science, 2015, 93(15): 222-233. [33] 章也, 李东阳, 李益民, 等. 注射成形生物可降解Fe-Mn合金的制备及性能[J].粉末冶金材料科学与工程, 2022, 27(1): 102-110. ZHANG Ye, Ll Dongyang, Ll Yiming, et al.Preparation and properties of biodegradable Fe-Mn alloy by injection molding[J]. Powder Metallurgy Materials Science and Engineering, 2022, 27(1): 102-110. [34] LUO X, FANG C, FAN Z, et al.Semi-solid powder moulding for preparing medical Mg-3Zn alloy, microstructure evolution and mechanical properties[J]. Materials Research Express, 2019, 6(7): 076258. [35] 吴敏. 半固态2024铝合金粉末成形/多孔材料变形的过程原理与数值模拟[D]. 广州: 华南理工大学, 2018: 15-20. WU Min.Process principles and numerical simulation on semi-solid powder forming and porous materials deformation of 2024 aluminum alloy[D]. Guangzhou: South China University of Technology, 2018: 15-20. [36] SEAH K H W, THAMPURAN R, TEOH S H. The influence of pore morphology on corrosion[J]. Corrosion Science, 1998, 40(4): 547-556. [37] HU Y P, DONG D L, WANG X Y et al. Synthesis and properties of Mg-Mn-Zn alloys for medical applications[J]. Materials, 2021, 14(8): 1855-1873. |
|
|
|