|
|
Biocompatibility of single-phase carbon materials |
ZHOU Yu1,2, YU Shu1,2, LI Yunping1,2 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. National Key Laboratory of Science and Technology for High-strength Structural Materials, Central South University, Changsha 410083, China |
|
|
Abstract Four single-phase carbon materials of resin carbon, carbon fiber, pyrolysis carbon and graphite were studied on the particle shedding and biocompatibility of the materials in simulated body fluids. The amount of particles falling off the surface of materials were studied by using simulated body fluid shock immersion method. The biocompatibility of materials were studied by MTT assay and direct contact experiment. The growth morphology of cells were observed by an inverted biological microscope. The results show that the amount of particles shedding on the surface of the four materials reaches the peak value after soaking in simulated body fluid for 72 h. With the continuous increasing soaking time, the shedding amount of particles decreases and tends to be stable. The most of accumulated shedding amount is graphite for 3.01 mg in the 168 h and the least one is resin carbon for 2.23 mg. The relative growth rates of cells in contact with the four kinds of single-phase carbon material extracts are all greater than 75% within 168 hours, and the cytotoxicity are all for grade 1. The four single-phase carbon materials can inhibit the growth and proliferation of cells, and the degree of inhibition is graphite, pyrolytic carbon, carbon fiber and resin carbon in descending order. The toxicity mechanism of single-phase carbon materials to cells is that the entry of carbon particles into the cell causes the degradation of mitochondria, which can destroy the energy station of the cell, and damage the cell’s DNA. It causes the cell to grow abnormally and even died.
|
Received: 10 September 2020
Published: 22 March 2021
|
|
|
|
|
[1] 张金超, 杨康宁, 张海松, 等. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 25(2): 397-408. ZHANG Jinchao, YANG Kangning, ZHANG Haisong, et al.Application status and Prospect of carbon nanomaterials in biomedical field[J]. Chemical Progress, 2013, 25(2): 397-408. [2] 李云胜, 唐中英, 谭子笑, 等. 碳基生物材料的医学应用现状和发展前景研究[J]. 卫生职业教育, 2007, 25(17): 156-157. LI Yunsheng, TANG Zhongying, TAN Zixiao, et al.Research on the medical application and development prospect of carbon based biomaterials[J]. Health Vocational Education, 2007, 25(17): 156-157. [3] NINE M J, DIPANKAR C, CHING H A, et al.Wear debris characterization and corresponding biological response: Artificial hip and knee joints[J]. Materials, 2014, 7(2): 980-1016. [4] 段海英, 高少怀. 3种材料纤维桩细胞毒性评价[J]. 口腔医学研究, 2012, 28(6): 516-518. DUAN Haiying, GAO Shaohuai.Cytotoxicity evaluation of three kinds of fiber posts[J]. Oral Medicine Research, 2012, 28(6): 516-518. [5] 刘向荣, 孙振宇. 碳纤维敷料在烧伤供皮区中的的临床应用[J]. 药物与人, 2014, 27(5): 108-109. LIU Xiangrong, SUN Zhenyu.The clinical application of carbon fiber dressing in burn skin donation area[J]. Drugs and People, 2014, 27(5): 108-109. [6] PETERSEN N, RICHARD C.Bisphenyl-Polymer/Carbon-fiber- reinforced composite compared to titanium alloy bone implant[J]. International Journal of Polymer Ence, 2011, 2011: 2341-2348. [7] BEHZADI S, IMANI M, YOUSEFI M, et al.Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications[J]. Nanotechnology, 2012, 23(4): 045102. [8] BOKROS J C.Carbon biomedical devices[J]. Carbon, 1977, 15(6): 353-371. [9] SILVIA N K, MARÍA A S, MARÍA I G de F, et al. Antibacterial activity and biocompability of zinc oxide and graphite particles as endodontic materials[J]. Journal of Hard Tissue Biology, 2017, 26(4): 311-318. [10] 熊信柏, 刘玲, 李贺军, 等. C/C-HA涂层复合材料体内体外骨组织响应行为[J]. 透析与人工器官, 2018, 29(1): 16-20. XIONG Xinbai, LIU Ling, LI Hejun, et al.Bone tissue response behavior of C/C-HA coating composite in vivo and in vitro[J]. Dialysis and Artificial Organs, 2018, 29(1): 16-20. [11] 倪昕晔, 汤晓斌, 林涛, 等. 碳/碳复合材料的生物学安全性评价研究[J]. 国际生物医学工程杂志, 2011, 34(6): 340-343. NI Xinhua, TANG Xiaobin, LIN Tao, et al.Biological safety evaluation of carbon/carbon Composites[J]. International Journal of Biomedical Engineering, 2011, 34(6): 340-343. [12] International Organization for Standard. Implants for surgery-in vitro evaluation for apatite-forming ability of implant material: 23317[S]. ISO, 2007. [13] 中国国家标准化管理委员会. 医疗器械生物学评价第5部分:体外细胞毒性试验: GB/T 16886.5-2003[S]. 北京: 中国标准出版社, 2003. China National Standardization administration committee. Biological evaluation of medical devices part 5: Cytotoxicity test in vitro: GT/T16886.5-2003[S]. Beijing: China Standards Press, 2003. [14] 李松, 房殿吉, 王占义, 等. 下颌骨放射性骨坏死骨组织的电镜观察[J]. 中国口腔颌面外科杂志, 2015, 13(5): 395-399. LI Song, FANG Dianji, WANG Zhanyi, et al.Electron microscopic observation of osteoradionecrosis of mandible[J]. Chinese Journal of Oral and Maxillofacial Surgery, 2015, 13(5): 395-399. [15] 王九令, 孙佳姝, 施兴华. 纳米颗粒与细胞的交互作用[J]. 科学通报, 2015, 60(21): 1976-1986. WANG Jiuling, SUN Jiashu, SHI Xinghua.The interaction of nanoparticles and cells[J]. Scientific Bulletin, 2015, 60(21): 1976-1986. [16] TANG C, HE L, LIU J, et al.Mitophagy: Basic mechanism and potential role in kidney diseases[J]. Kidney Diseases, 2015, 1(1): 71-79. [17] LIU L, LIAO X, WU H, et al.Mitophagy and its contribution to metabolic and aging-associated disorders[J]. Antioxidants and Redox Signaling, 2020, 32(12): 906-927 [18] 杨辉, 刘超, 杨丹凤, 等. 碳、氧化锌和碳载氧化锌复合纳米颗粒对小鼠胚胎成纤维细胞活性抑制及DNA损伤的研究[J].卫生研究, 2008, 37(1): 12-15. YANG Hui, LIU Chao, YANG Danfeng, et al.Study on inhibition of activity of mouse embryonic fibroblasts and DNA damage by carbon, zinc oxide and carbon-loaded zinc oxide composite nanoparticles[J]. Health Research, 2008, 37(1): 12-15. [19] 佘治中, 于澍, 李云平, 等. 钴合金和钛合金的细胞毒性研究[J]. 中国生物医学工程学报, 2020, 39(1): 124-128. SHE Zhizhong, YU Shu, LI Yunping, et al.Study on cytotoxicity of cobalt alloy and titanium alloy[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 124-128. [20] 韩丹, 王玥, 王声远, 等. 碳纤维复合材料粉尘对哺乳动物细胞毒性影响的实验研究[J]. 工业卫生与职业病, 2012, 38(4): 220-223. HAN Dan, WANG Yue, WANG Shengyuan, et al.Experimental study on the effect of carbon fiber composite dust on mammalian cell toxicity[J]. Industrial Hygiene and Occupational Diseases, 2012, 38(4): 220-223. [21] 孙皎, 丁婷婷. 两种纳米陶瓷颗粒对细胞DNA损伤反应的研究[J]. 口腔材料器械杂志, 2010, 19(3): 117-122. SUN Jiao, DING Tingting.Study on the response of two kinds of nano-ceramic particles to cell DNA damage[J]. Journal of Dental Materials and Devices, 2010, 19(3): 117-122. |
|
|
|