|
|
High performance iron-based alloy fabricated by activated powder sintering |
CAO Guangyu, LIU Rutie, DANG Shengyun, XIONG Xiang, CHEN Jie, LIAO Ning |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Mixing the mechanical milled pre-alloy with atomized iron and carbonyl iron, respectively, Fe-3Mo- 3Cr-1.2V-0.5Mn-2C alloy was prepared by vacuum sintering. The microstructure and mechanical properties of the as-prepared samples by mechanically activated pre-alloy and carbonyl iron were studied. The results show that mechanically activated milling can effectively improve the diffusion of pre-alloy in atomized iron and densification of iron based powder metallurgy materials. With the highly surface-activated carbonyl iron powder as raw material, higher density and mechanical properties can be obtained in low sintering temperature. The iron-based powder metallurgy sample sintered at 1 120 ℃ has low porosity and medium grain size. The density, brinell hardness and bending strength are 7.68 g/cm³, 538 and 1 222 MPa, respectively.
|
Received: 06 July 2015
Published: 22 March 2021
|
|
|
|
|
[1] 孙世杰. 近年铁基粉末冶金行业发展浅析[J]. 粉末冶金工业, 2010, 20(2): 53-58. SUN Shijie.Advance in the ferrous powder metallurgy[J]. Powder Metallurgy Industry, 2010, 20(2): 53-58. [2] SKOGLUND P.High density P/M parts by high velocity compaction[J]. Powder Metallurgy, 2001, 44(3): 199-201. [3] 王建忠, 汤慧萍, 曲选辉, 等. 高密度粉末冶金零件制备技术现状[J]. 粉末冶金工业, 2014, 24(3): 56-60. WANG Jianzhong, TANG Huiping, QU Xuanhui, et al.Status for preparing high density PM parts[J]. Powder Metallurgy Industry, 2014, 24(3): 56-60. [4] 李佑福. 粉末冶金Fe-2Ni-1Cu-0.6C合金烧结助剂的研究[D]. 长沙: 中南大学, 2014: 25-36. LI Youfu.Investigation on sintering aids of powder metallurgy Fe-2Ni-1Cu-0.6C alloy[D]. Changsha: Central South University, 2014: 25-36. [5] 郭丽娜. 高能球磨低温烧结制备超细Fe-Al金属间化合物的研究[D]. 昆明: 昆明理工大学, 2006: 39-57. GUO Lina.Study on preparation of iron aluminide in low sintering temperature by ball milling[D]. Kunming: Kunming University of Science and Technology, 2006: 39-57. [6] 黄培云. 粉末冶金原理[M]. 北京: 冶金工业出版社, 2011: 3-25, 377-389. HUANG Peiyun.Theory of Powder Metallurgy[M]. Beijing: Metallurgical Industry Press, 2011: 3-25, 377-389. [7] GIM`ENEZ S, ZUBIZARRETA C, TRABADELO V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions[J]. Materials Science and Engineering A, 2008, 480: 130-137. [8] 张小军. 机械活化氧化锌、氧化铜、氧化镍储能研究[D]. 长沙: 中南大学, 2008: 20-37. ZHANG Xiaojun.The research of mechanically activated storage energy on zine oxide, cupric oxide and nickel monoxide[D]. Changsha: Central South University, 2008: 20-37. [9] 贾成厂, 柳学全, 李一. 羰基铁粉及其应用[J]. 金属世界, 2014, 1: 18-23. JIA Chengchang, LIU Xuequan, LI Yi.Carbonyl iron and its application[J]. Metal World, 2014, 1: 18-23. [10] 蹇福全, 何高风, 于海. 添加羰基铁粉提高铁基合金烧结密度的研究[J]. 粉末冶金技术, 1994, 12(4): 278-281. JIAN Fuquan, HE Gaofeng, YU Hai.Research on sintering density of iron base alloy improved by addition of carbonyl iron powder[J]. Powder Metallurgy Technology, 1994, 12(4): 278-281. [11] MORTENSON A J Solidification processing of metal matrix composites[J]. International Materias Reviews, 1992, 37(3): 101-128. [12] 陈荟竹, 李松林, 王行. 少量Mo添加对Fe-0.5Mn-0.5C烧结钢组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(5): 784-789. CHEN Huizhu, LI Songlin, WANG Hang.Effect of small amount of Mo addition on microstructure and mechanical properties of Fe-0.5Mn-0.5C sintered steels[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5): 784-789. [13] ERDEN M A, GUENDUE E S, TUERKMEN M, et al.Microstructural characterization and mechanical properties of microalloyed powder metallurgy steels[J]. Materials Science & Engineering A, 2014, 616: 201-206. [14] 成丽丽, 董颐. 高碳、高合金铁基材料的液相烧结[J]. 粉末冶金技术, 1998, 16(3): 195-199. CHENG Lili, DONG Yi.Liquid phase sintering of iron-based material high content of alloying elements[J]. Powder Metallurgy Technology, 1998, 16(3): 195-199. [15] 罗述东, 李祖德, 赵慕岳, 等. 锰在粉末冶金材料中的应用[J].粉末冶金材料科学与工程, 2007, 12(6): 53-66. LUO Shudong, LI Zude, ZHAO Muyue, et al.The applications of manganese in the powder metallurgy materials[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(6): 53-66. [16] CAMPOS M, TORRALBA J M.Surface assessment in low alloyed Cr-Mo sintered steels after heat and thermochemical Treatment[J]. Surface and Coatings Technology, 2004, 182(2/3): 351-362. [17] 朱权利, 周建仁. 粉末冶金Fe-C-Cu-Cr-Mn的组织与性能研究[J]. 热加工工艺, 2014, 43(8): 87-94. ZHU Quanli, ZHOU Jianren.Study on microstructure and properties of powder metallurgy Fe-C-Cu-Cr-Mn[J]. Hot Working Technology, 2014, 43(8): 87-94. [18] 王基才, 尤显卿, 郑玉春, 等. 颗粒增强金属基复合材料的研究现状及展望[J]. 硬质合金, 2003, 20(1): 51-55. WANG Jicai, YOU Xianqing, ZHENG Yuchun, et al.Research and development status of particulate reinforced metal matrix composites[J]. Cemented Carbide, 2003, 20(1): 51-55. [19] 陆宇衡. 高性能铁基粉末冶金烧结材料制备、性能及超声疲劳行为研究[D]. 广州: 华南理工大学, 2014: 30-73. LU Yuheng.Study on the preparation, property and ultrasonic fatigue behavior of high-performance iron-based powder metallurgy sintered material[D]. Guangzhou: South China University of Technology, 2014: 30-73. |
|
|
|