|
|
Effect of Cr content on microstructure and properties of ZK30-0.2Cu-Cr alloys prepared by microwave sintering |
XU Yan, ZHANG Zhizhen, JI Jie, JIA Yunyi, WU Jiani, PEI Yingluo, JI Hairui, ZHAO Mingchun |
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract Using ZK30 powders, copper powders and Cr powders as raw materials, ZK30-0.2Cu-Cr alloy with Cr content of 0-0.40% (mass fraction, the same below) was prepared by microwave sintering. The microstructure of the alloy was observed and analyzed by metallographic microscope, scanning electron microscope and X-ray diffracto meter. The mechanical properties, degradability, antibacterial properties and biocompatibility of the alloy were determined as well. The effect of Cr content on the microstructure and properties of ZK30-0.2Cu-xCr alloy was studied. The results show that the hardness of the alloy increases with the increase of the solid solubility of Cr in the matrix. With the increase of Cr content, the biodegradation rate fluctuates. When w(Cr) is 0.1%, a Cr2O3 oxide film forms on the alloy surface to protect the matrix from corrosion, and the biodegradation rate of the alloy reaches the lowest. But when w(Cr) exceeds 0.1%, the solid phase diffusion is not complete, and the residue of Cr element increases galvanic corrosion. Itadversely affects the corrosion resistance of the alloy and increases the biodegradation rate. In addition, all of the ZK30-0.2Cu-xCr alloys have good cytocompatibility and antibacterial ability (antibacterial rate > 93%). Among them, ZK30-0.2Cu-0.05Cr has the best antibacterial performance with antibacterial rate as high as 99.38%. Taken into account, ZK30-0.2Cu-0.1Cr alloy has good mechanical properties, appropriate degradation rate, excellent cytocompatibility and antibacterial properties, so it is a potential antibacterial biological implant material.
|
Received: 26 August 2021
Published: 28 February 2022
|
|
|
|
|
[1] RAMALINGAM V V, RAMASAMY P, KOVUKKAL M D, et al.Research and development in magnesium alloys for industrial and biomedical applications: A review[J]. Metals and Materials International, 2020, 26(4): 409-430. [2] NIINOMI M, NAKAI M, HIEDA J.Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8(11): 3888-3903. [3] CHEN Q Z, THOUAS G A.Metallic implant biomaterials[J]. Materials Science & Engineering R, 2015, 87: 1-57. [4] KANNAN M B, RAMAN R K S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid[J]. Biomaterials, 2008, 29(15): 2306-2314. [5] 姚怀, 刘亚, 杜三明, 等. 时效处理对Mg-2.0Zn-0.5Zr-3.0Gd生物降解镁合金组织, 力学性能及耐腐蚀性能的影响[J]. 中国有色金属学报, 2020, 30(3): 518-529. YAO Huai, LIU Ya, DU Sanming, et al.Effect of aging treatment on the microstructure, mechanical properties and corrosion resistance of Mg-2.0Zn-0.5Zr-3.0Gd biodegradable magnesium alloy[J]. Chinese Journal of Nonferrous Metals, 2020, 30(3): 518-529. [6] SONG J F, SHE J, CHEN D L, et al.Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1): 1-41. [7] KARUNAKARAN R, ORTGIES S, TAMAYOL A, et al.Additive manufacturing of magnesium alloys[J]. Bioactive Materials, 2020, 5(1): 44-54. [8] SHAO Y, ZENG R C, LI S Q, et al.Advance in antibacterial magnesium alloys and surface coatings on magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2020, 33(5): 615-629. [9] SU J L, TENG J, XU Z L, et al.Biodegradable magnesium- matrix composites: a review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 724-744. [10] 张智诚, 田君. Nd、Zr元素对铸造医用镁合金组织及耐蚀性能的影响研究[J]. 东莞理工学报, 2020, 27(5): 78-83. ZHANG Zhicheng, TIAN Jun.Research on the effect of Nd and Zr elements on the microstructure and corrosion resistance of casting medical magnesium alloys[J]. Journal of Dongguan Technology, 2020, 27(5): 78-83. [11] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180. YUAN Guangyin, NIU Jialin.Research progress of biodegradable medical magnesium alloys in bone repair applications[J]. Acta MetallSinica, 2017, 53(10): 1168-1180. [12] 王小红, 马建标, 王亦农, 等. 骨修复材料的研究进展[J]. 生物医学工程学杂志, 2001, 18(4): 647-652. WANG Xiaohong, MA Jianbiao, WANG Yinong, et al.Research progress of bone repair materials[J]. Journal of Biomedical Engineering, 2001, 18(4): 647-652. [13] ZHANG E L, YIN D S, XU L P, et al.Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Materials Science & Engineering A, 2009, 29(3): 987-993. [14] YIN Y, HUANG Q L, LIANG L X, et al.In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications[J]. Journal of Alloys and Compounds, 2019, 785: 38-45. [15] TAO J X, ZHAO M C, ZHAO Y C, et al.Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting-science direct[J]. Journal of Magnesium and Alloys, 2020, 8(3): 952-962. [16] BUHA J.The effect of micro-alloying addition of Cr on age hardening of an Mg-Zn alloy[J]. Materials Science & Engineering A, 2008, 492(1/2): 293-299. [17] HUANG X F, MA Y J, ZHANG Q Q, et al.Effects of trace Cr on as-cast microstructure and microstructural evolution of semi-solid isothermal heat treatment ZC61 magnesium alloy[J]. China Foundry, 2019, 16(1): 53-62. [18] VILARIGUES M, ALVES L C, NOGUEIRA I D, et al.Characterisation of corrosion products in Cr implanted Mg surfaces[J]. Surface & Coatings Technology, 2002, 158: 328-333. [19] ZHAO M C, ZHAO Y C, YIN D F, et al.Biodegradation behavior of coated as-extruded Mg-Sr alloy in simulated body fluid[J]. Acta Metallurgica Sinica Letters, 2019, 32(10): 1195-1206. [20] ZHAO M C, SCHMUTZ P, BRUNNER S, et al.An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing[J]. Corrosion Science, 2009, 51(6): 1277-1292. [21] 赵维康. 骨科新型镁合金(Mg-1.5Sn-xZn)材料制备,生物活性及抗菌性研究[D]. 重庆: 重庆医科大学, 2020. ZHAO Weikang.Preparation, biological activity and antibacterial properties of a new type of magnesium alloy (Mg-1.5Sn-xZn) material for orthopedics[D]. Chongqing: Chongqing Medical University, 2020. [22] 庄天涯, 张际亮, 王霏, 等. 金属粉末微波烧结机理研究进展[J]. 粉末冶金技术, 2019, 37(5): 392-397. ZHUANG Tianya, ZHANG Jiliang, WANG Fei, et al.Research progress of microwave sintering mechanism of metal powder[J]. Powder Metallurgy Technology, 2019, 37(5): 392-397. [23] 王瑞虎, 杨军, 胡鹏, 等. 金属材料微波烧结技术的研究进展[J]. 材料导报, 2021, 23: 1-19. WANG Ruihu, YANG Jun, HU Peng, et al.Research progress of microwave sintering technology for metallic materials[J]. Material Guide, 2021, 23: 1-19. [24] NIU J L, TAING Z B, HUANG H, et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. Materials Science & Engineering C, 2016, 69: 407-413. [25] 王东, 刘立斌, 薛人豪, 等. Nb元素对Zr-Ti基生物材料力学性能和耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(2): 125-131. WANG Dong, LIU Libin, XUE Renhao, et al.Effect of Nb element on mechanical properties and corrosion resistance of Zr-Ti based biomaterials[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2): 125-131. |
|
|
|