|
|
Effects of Ti(C,N) content and sintering temperature on the thickness of β-free layer of graded cemented carbides |
CHENG Dengfeng, SUN Dongping, LIU Nana |
Jiujiang Golden Egret Hard Material Co., Ltd., Jiujiang 332000, China |
|
|
Abstract WC-TiC-Ti(C,N)-TaC-NbC-Co cemented carbide was prepared in denitrification atmosphere with Ti(C,N) as N source. The effects of Ti(C,N) content and sintering temperature on the thickness of β-free layer, properties and microstructure of the cemented carbides were investigated. The results show that the thickness of β-free layer increases with increasing mass fraction of Ti(C,N) from 0.5% to 1.5%. With the increase of sintering temperature, the thickness of β-free layer increases, and the increment increases with increasing Ti(C,N) content. The density, hardness and coercivity of the alloy are not affected by Ti(C,N) content. However, with the increase of sintering temperature, the hardness decreases, the coercivity decreases, and the average grain size of WC increases and becomes straight. There is no obvious abnormal growth of WC grains in the β-free layer, and the thickness of β-free layer is determined by the diffusion of Ti and the content of N.
|
Received: 06 November 2020
Published: 22 March 2021
|
|
|
|
|
[1] 王鹏, 时凯华, 顾金宝, 等. 不同黏结相碳化钨基硬质合金的研究与应用(Ⅰ)[J]. 硬质合金, 2020, 37(1): 74-89. WANG Peng, SHI Kaihua, GU Jinbao, et al.A review on WC-based cemented carbide with different content of binder phase (I)[J]. Cemented Carbide, 2020, 37(1): 74-89. [2] 羊建高, 王海兵, 刘咏. 用于涂层的梯度硬质合金基体的制备方法与梯度形成机理[J]. 粉末冶金技术, 2003(5): 39-43. YANG Jiangao, WANG Haibing, LIU Yong.Fabrication methods and formation mechanism of surface gradient zone of cemented carbides[J]. Powder Metallurgy Technology, 2003(5): 39-43. [3] SUZUKI H, HAYASHI K, TANIGUCHI Y.The beta-free layer formed near the surface of sintered WC-beta-Co alloys containing nitrogen[J]. Transactions of the Japan Institute of Metals, 1981, 22(11): 758-764. [4] SCHWARZKOPF M, EXNER H E, FISCHMEISTER H F, et al. Kinetics of compositional modification of (W,Ti)C-WC-Co alloy surfaces[J]. Materials Science and Engineering A, 1988, 105/106: 225-231. [5] GUSTAFSON P, ÖSTLUND Å.Binder-phase enrichment by dissolution of cubic carbides[J]. International Journal of Refractory Metals and Hard Materials, 1993, 12(3): 129-136. [6] 张景峰, 杜勇, 张伟彬, 等. 烧结碳势对梯度硬质合金组织结构的影响[J]. 硬质合金, 2018, 35(4): 235-248. ZHANG Jingfeng, DU Yong, ZHANG Weibin, et al.Effect of carbon potential during sintering on microstructure of graded cemented carbide[J]. Cemented Carbide, 2018, 35(4): 235-248. [7] 陈利, 吴恩熙, 王社权, 等. WC-Ti(C,N)-Co梯度硬质合金表面韧性区的形成机理[J]. 中南大学学报(自然科学版), 2006, 37(4): 650-654. CHEN Li, WU Enxi, WANG Shequan, et al.Formation mechanism of surface ductile zones in WC-Ti(C,N)-Co gradient cemented carbide[J]. Journal of Central South University (Natural Science Edition), 2006, 37(4): 650-654. [8] FRYKHOLM R, JANSSON B, ANDRÉN HO. The influence of carbon content on formation of carbo-nitride free surface layers in cemented carbides[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20(5): 345-353. [9] 蔡俊, 丰平, 贺跃辉. 烧结工艺对梯度结构硬质合金梯度层组织和厚度的影响[J]. 硬质合金, 2007, 24(2): 91-95. CAI Jun, FENG Ping, HE Yuehui.The effect of sintering process on microstructure and thickness of graded layer of functionally graded cemented carbides[J]. Cemented Carbide, 2007, 24(2): 91-95. [10] C J C A, A L Z, B X D, et al. Role of Co content on the gradient microstructure evolution and mechanical properties of bilayer functionally graded cemented carbides[J]. Materials Chemistry and Physics, 2020, 248: 1-11. [11] ZHOU X, WANG Y, WANG R, et al.Preparation and microstructure of layered structure functional gradient cemented carbides[J]. Functional Materials Letters, 2019, 12(4): 1-5. [12] ZHANG W, DU Y, PENG Y.Effect of TaC and NbC addition on the microstructure and hardness in graded cemented carbides: Simulations and experiments[J]. Ceramics International, 2016, 42(1): 428-435. [13] 温光华, 贺跃辉, 王社权, 等. Ti(C,N)的碳氮比及粒度对脱β层梯度硬质合金的影响[J]. 硬质合金, 2009, 26(4): 201-205. WEN Guanghua, HE Yuehui, WANG Shequan, et al.Effect of composition and grain size of Ti(C,N) on the cobalt-rich layer of gradient cemented carbide[J]. Cemented Carbide, 2009, 26(4): 201-205. [14] 唐俊, 熊计, 郭智兴, 等. WC粒度对梯度硬质合金组织和性能的影响[J]. 硬质合金, 2015, 32(6): 364-371. TANG Jun, XIONG Ji, GUO Zhixing, et al.Effect of WC grain size on microstructure and properties of gradient cemented carbide[J]. Cemented Carbide, 2015, 32(6): 364-371. [15] LI N, LI X, ZHANG W, et al.Relation between the nitrogen gas pressure and structure characteristics of WC-Ti(C,N)-Co graded cemented carbides[J]. Journal of Alloys and Compounds, 2020, 831: 1-8. [16] 倪磊, 杨天恩, 熊计, 等. 真空-压力两步烧结制备的表层脱立方相梯度硬质合金的组织与性能[J]. 硬质合金, 2018, 35(1): 27-36. NI Lei, YANG Tianen, XIONG Ji, et al.Microstructure and properties of gradient cemented carbides with cubic phase depleted in the surface layer by two-step vacuum and pressure sintering[J]. Cemented Carbide, 2018, 35(1): 27-36. [17] 陈巧旺, 刘兵, 姜中涛, 等. 表层富立方相功能梯度硬质合金的烧结工艺[J]. 材料科学与工程学报, 2014, 32(1): 93-97. CHEN Qiaowang, LIU Bing, JIANG Zhongtao, et al.Sintering process of functionally graded cemented carbides with cubic rich surface[J]. Journal of Materials Science&Engineering, 2014, 32(1): 93-97. [18] 吉红伟. 表层富立方相梯度硬质合金的制备及其显微结构研究[D]. 广州: 广东工业大学, 2019. JI Hongwei.A study on processing and microstructure of functionally graded cemented carbide with FCC phase riched surface layer[D]. Guangzhou: Guangdong University of Technology, 2019. [19] 王雁洁, 刘咏, 杨新宇. TiN添加量对WC-TiC-TaC-8.0Co硬质合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(1): 35-39. WANG Yanjie, LIU Yong, YANG Xinyu.Effect of TiN content on microstructure and properties of WC-TiC-TaC-8%Co cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 35-39. [20] 邹伶俐. Ti(C,N)含量对硬质合金脱β层的形成及其CVD涂层刀具切削性能的影响[J]. 粉末冶金技术, 2015, 33(2): 116-120. ZOU Lingli.Effect of Ti(C,N) content on the formation of gradient cemented carbid and its cutting performance of CVD-coated tools[J]. Powder Metallurgy Technology, 2015, 33(2): 116-120. [21] 张武装, 刘咏, 贺跃辉, 等. Ti(CN)含量对硬质合金梯度结构和性能的影响[J]. 稀有金属与硬质合金, 2005, 33(2): 28-30. ZHANG Wuzhuang, LIU Yong, HE Yuehui, et al.Effect of Ti(CN) content on the gradient structure and properties of cemented carbides[J]. Rare Metals and Cemented Carbides, 2005, 33(2): 28-30. [22] 甘明亮. 氮化钛、碳化钛和碳氮化钛的合成及其在炭砖中的应用[D]. 武汉: 武汉科技大学, 2006. GAN Mingliang.Synthesis of titanium nitride, titanium carbide, titanium carbonitride and their application in carbide bricks[D]. Wuhan: Wuhan University of Science and Technology, 2006. [23] 陈楚轩, 黄鸿宇. WC-Co硬质合金的相对磁饱和[J]. 中国钨业, 2009, 24(5): 87-91. CHEN Chuxuan, HUANG Hongyu.On the relative magnetic saturation of WC-Co cemented carbide[J]. China Tungsten Industry, 2009, 24(5): 87-91. [24] 李勇, 龙坚战. WC-Co 硬质合金磁性能与晶粒度之间的关系[J]. 硬质合金, 2010, 27(4): 195-198. LI Yong, LONG Jianzhan.Relationship between magnetic properties and grain size for WC-Co cemented carbide[J]. Cemented Carbide, 2010, 27(4): 195-198. |
|
|
|