|
|
Microstructure and properties of pure molybdenum block prepared by selective electron beam melting |
LI Huixia1, ZHU Jilei1, TAN Yannni2, LIU Bin2, CHEN Rui1, ZHAO Pei1, YI Yang1 |
1. Xi'an Sailong Metal Materials Co., Ltd., Xi'an 710018, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract The block of pure molybdenum was fabricated for the first time by selective electron beam melting. Its impurities, microstructure, density and micro-hardness were tested using chemical analysis, metallurgical microscopy, chemical balance and microhardness tester. The results show that the impurity increments of the as-build pure molybdenum such as C, N, O and H are not more than 0.001%. Using a single-melting process, the microstructure of pure molybdenum along the deposition direction present scoarse columnar crystal characteristics, and there are a few microcracks along the columnar grain boundary. Using a double-melting process, the grain size is refined and the microcrack phenomenon is suppressed. The better selective electron beam double-melting process is as follows: the primary melting current is 12 mA, and the velocity is 0.6 m/s; the secondary melting current is 12 mA, and the velocity is 0.89 m/s. Under the better process, the relative density of the as-build pure molybdenumblock is higher than 99% with a density of (10.15±0.13) g/cm3. The microhardness (HV0.2) is 185-200 and shows no anisotropy.
|
Received: 06 August 2020
Published: 18 January 2021
|
|
|
|
|
[1] 郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展[J]. 工业技术创新, 2017, 4(4): 6-14. GUO Chao, ZHANG Pingping, LIN Feng. Research advances of electron beam selective melting additive manufacturing technology[J]. Industrial Technology Innovation, 2017, 4(4): 6-14. [2] 汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3): 225-235. TANG Huiping, WANG Jian, LU Shenglu, et al. Research progress in selective electron beam melting[J]. Materials China, 2015, 34(3): 225-235. [3] ZHANG X Z, TANG H P, LEARY M, et al.Toward manufacturing quality Ti-6Al-4V lattice struts by selective electron beam melting (SEBM) for lattice design[J]. The Minerals, Metals & Materials Society, 2018, 70(9): 1870-1876. [4] YANG Y G, YANG P W, YANG K, et al.Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting[J]. International Journal of Refractory Metals & Hard Materials, 2019(84): 105040. [5] TERRAZAS C A, MIRELES J, GAYTAN S M, et al.Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology[J]. International Journal of Advanced Manufacturing Technology, 2016(84): 1115-1126. [6] TANG H P, YANG K, JIA L, et al.Tantalum bone implants printed by selective electron beam manufacturing (SEBM) and their clinical applications[J]. The Minerals, Metals & Materials Society, 2020, 72(3): 1016-1021. [7] TODAI M, NAKANO T, LIU T Q, et al.Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing, 2017(13): 61-70. [8] HELMER H E, KORNER C, SINGER R F, et al.Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure[J]. Journal of Materials Research, 2014, 29(17): 1987-1996. [9] 赵虎. 钼及钼合金烧结技术研究及发展[J]. 粉末冶金技术, 2019, 37(5): 382-391. ZHAO Hu. Research and development on the sintering techniques of molybdenum and molybdenum alloys[J]. Powder Metallurgy Technology, 2019, 37(5): 382-391. [10] 董帝, 黄洪涛, 熊宁, 等. 钼及钼合金在核反应堆中的应用[J].中国钼业, 2018, 42(4): 6-13. DONG Di, HUANG Hongtao, XIONG Ning, et al. Application of molybdenum and molybdenum alloys in nuclear reactions[J]. China Molybdenum Industry, 2018, 42(4): 6-13. [11] 居炎鹏, 王爱琴. 钼合金研究现状[J]. 粉末冶金工业, 2015, 25(4): 58-62. JU Yanpeng, WANG Aiqin. Current research status of Mo alloys[J]. Powder Metallurgy Industry, 2015, 25(4): 58-62. [12] 郭志俊, 林勇, 王文明. 热等静压工艺对金属钼力学性能的影响[J]. 兵器材料科学与工程, 2002, 25(4): 22-32. GUO Zhijun, LIN Yong, WANG Wenming. Effect of HIP on physicomechanical properties of molybdenum[J]. Ordnance Material Science and Engineering, 2002, 25(4): 22-32. [13] 唐哲, 刘斌, 李玉新. 快速成型钼金属喷管高温烧结试验研究[J]. 铸造技术, 2012, 33(3): 277-279. TANG Zhe, LIU Bin, LI Yuxin. Research of high temperature sintering for rapid prototyping Mo metal nozzle[J]. Foundry Technology, 2012, 33(3): 277-279. [14] 胡保全,白培康,程军. 选择性激光烧结钼基复合粉末(TZM) 造金属零件[J]. 铸造设备研究, 2008(2): 17-20. HU Baoquan, BAI Peikang, CHENG Jun. Fabrication of alloy parts by selective laser sintering molybdenum matrix composite powders[J]. Research Studies on Foundry Equipment, 2008(2): 17-20. [15] FAIDEL D, J0NAS D, NATOUR G, et al. Investigation of the selective laser melting process with molybdenum powder[J]. Additive Manufacturing, 2015(8): 88-94. [16] KASERER L, BRAUN J, STAJKOVIC J, et al.Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon[J]. International Journal of Refractory Metals and Hard Materials, 2019(84): 105000. [17] WANG D W, YU C F, MANG J, et al.Densification and crack suppression in selective laser melting of pure molybdenum[J]. Materials and Design, 2017, 129(9): 44-52. [18] 李继东, 王长华, 墨淑敏, 等. 钼化学分析方法: GB/T4325—2013[S]. 北京: 中国标准出版社, 2013. LI Jidong, WANG Changhua, Mo Shumin, et al. Methods for molybdenum chemical analysis: GB/T 4325-2013[S]. Beijing: China Standards Press, 2013. [19] 杨广宇, 杨鹏伟, 刘楠, 等. 电子束选区熔化成形纯钨的显微组织与晶体取向[J]. 稀有金属材料与工程, 2019, 48(8): 2580-2584. YANG Guangyu, YANG Pengwei, LIU Nan, et al. Microstructure and crystal orientation of pure tungsten fabricated by selective electron beam melting[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2580-2584. [20] LUO Y, XING L L, JIANG Y D, et al.Additive manufactured large Zr-based bulk metallic glass composites with desired deformation ability and corrosion resistance[J]. Materials, 2020, 13(3): 1-17. [21] 锁红波, 陈哲源, 李晋炜. 电子束熔融快速制造Ti-6Al-4V 的力学性能[J]. 航天制造技术, 2009(6): 18-22. SUO Hongbo, CHEN Zheyuan, LI Jinwei. Mechanical properties of Ti-6Al-4V alloys by electron beam melting (EBM)[J]. Aerospace Manufacturing Technology, 2009(6): 18-22. |
|
|
|