|
|
Microstructure and properties of bindeless Ti(C,N)-based cermets prepared by spark plasma sintering |
LU Saijun, KANG Xiyue, ZHANG Meimei, HE Yuehui |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract The binderless Ti(C,N)-based cermets were fabricated by spark plasma sintering using Ti(C,N) powder as raw materials. The microstructure, mechanical properties, wear resistance of the materials were studied. Effects of sintering temperature, carbon black addition, carbides additives and solid solution raw powders on the relative density and mechanical properties were investigated. Furthermore, the (Ti,W,Mo,Ta) (C,N) solid solution powder fabricated by the dissolving of other alloying elements in the lattice of Ti(C,N) was also used to prepare the binderless cermets. The experimental results show that the relative density and mechanical properties of binderless cermets increase with increasing sintering temperature. With increasing carbon black content, the relative density and mechanical properties increase firstly and then decrease. After adding WC, Mo2C and TaC carbides into Ti(C,N) powder, or using (Ti,W,Mo,Ta) (C,N) solid solution powder as raw materials, the oxygen content of Ti(C,N)-based cermets with bindeless phase is obviously reduced. The density and mechanical properties of the materials are greatly improved, and the friction coefficient and wear resistance of the materials are lower. The binderless Ti(C,N)-based cermet prepared by (Ti,W,Mo,Ta) (C,N) solid solution powders exhibits hardness (HV30) of 19.9 GPa, transverse rupture strength of 1 030 MPa and fracture toughness of 7.8 MPa·m1/2.
|
Received: 15 September 2020
Published: 18 January 2021
|
|
|
|
|
[1] LENGAUER W, SCAGNETTO F.Ti(C,N)-based cermets: Critical review of achievements and recent developments[C]// LENGAUER W. Solid State Phenomena. Switzerland:Trans Tech Publications Ltd, 2018: 53-100. [2] LIN N, ZHAO L, MA C, et al.Enhanced mechanical properties and high temperature oxidation resistance of Ti(C,N)-based cermets containing Zr[J]. Journal of Alloys and Compounds, 2019, 788: 649-657. [3] 孙万昌, 佘晓林, 张磊, 等. Ti(C,N)基金属陶瓷材料的强韧化研究进展[J]. 热加工工艺, 2014(18): 17-20. SUN Wanchang, SHE Xiaolin, ZHANG Lei, et al. Research progress of strengthening and toughening of Ti(C,N)-based Cermets[J]. Hot Working Technology, 2014(18): 17-20. [4] 李少峰, 刘维良, 彭牛生, 等. 金属陶瓷刀具材料研究进展[J]. 陶瓷学报, 2010, 31(1): 140-144. LI Shaofeng, IIU Weiliang, PENG Niusheng, et al. Research progress of cermet tool materials[J]. Journal of Ceramics, 2010, 31(1): 140-144. [5] 杨天恩, 熊计, 郭智兴, 等. Ti(C,N)基金属陶瓷芯/环结构的研究进展[J]. 硬质合金, 2010, 27(1): 55-64. YANG Tian’en, XIONG Ji, GUO Zhixing, et al. Research progress of core/rim microstructure for Ti(C,N)-based cermet[J]. Cemented Carbide, 2010, 27(1): 55-64. [6] 付明. 固溶体型碳氮化钛基金属陶瓷刀片材料的研制[D]. 厦门: 厦门理工学院, 2018. FU Ming.Study on the blade materials fabricated by the solid-solution Ti(C,N)-based cermets[D]. Xiamen: Xiamen University of Technology, 2018. [7] 李仁琼, 刘铁梅. 工艺参数对无粘结相硬质合金性能的影响[J]. 硬质合金, 2005, 22(1): 23-26. LI Renqiong, LIU Tiemei. Effects of processing parameters on the properties of non-bond cemented carbide[J]. Cenmented Carbide, 2005, 22(1): 23-26. [8] 邹洪伟, 叶金文, 刘颖, 等. 原料粉末碳、氧含量对无粘结相硬质合金性能的影响[J]. 功能材料, 2010, 41(1): 90-93. ZOU Hongwei, YE Jinwen, LIU Ying, et al. The influence of quality of ultrafine powder on microstructure and properties of bindless tungsten carbide[J]. Journal of Functioinal Materials, 2010, 41(1): 90-93. [9] 张太全, 聂洪波, 李文强, 等. 无粘结相硬质合金研究进展与应用[J]. 中国钨业, 2018, 33(5): 69-75. ZHANG Taiquan, NIE Hongbo, LI Wenqiang, et al. Research progress and application of binderless cemented carbides[J]. China Tungsten Industry, 2018, 33(5): 69-75. [10] 刘超. 无粘结相硬质合金的发展及展望[J]. 中国材料进展, 2016, 35(8): 41-45. LIU Chao. The development and prospect of binderless carbide [J]. Materials China, 2016, 35(8): 41-45. [11] XIAO Y R, ZHI J P, HUI Y R, et al.Phase Composition and microstructure of binderless WC-ZrC cemented carbides fabricated by spark plasma sintering[J]. Key Engineering Materials, 2014, 603: 556-560. [12] XU Y C, CHEN K H, WANG S Q, et al.Oxidation and cutting properties of TiN and TiAlN coated cemented carbide[J]. Materials Science & Engineering of Powder Metallurgy, 2011, 16(3): 425-430. [13] ANGERER P, YU L, KHOR K A, et al.Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders[J]. Journal of the European Ceramic Society, 2005, 25(11): 1919-1927. [14] HUGOSSON H W, ENGQVIST H.The connection between the electronic structure and the properties of binderless tungsten carbides[J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(1/2): 55-61. [15] KIM H, KIM J, KWON Y.Mechanical properties of binderless tungsten carbide by spark plasma sintering[C]// KORUS 2005. Cnternational Organizing Committee. The 9th Russian-Korean International Symposium on Science and Technology. Novosibirsk, Russia: IEEE, 2005: 458-461. [16] CHENG L, XIE Z, JIAN L, et al.Effects of Y2O3 on the densification and fracture toughness of SPS-sintered TiC[J]. Material Research Innovations, 2017, 22(1): 1-6. [17] SHON I J, KIM B R, DOH J M, et al.Consolidation of binderless nanostructured titanium carbide by high-frequency induction heated sintering[J]. Ceramics International, 2010, 36(6): 1797-1803. [18] ZHENG Y, WANG S, YAN Y, et al.Microstructure evolution and phase transformation during spark plasma sintering of Ti(C,N)-based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(4): 306-311. [19] LOZYNSKYY Z O, HERRMANN M, RAGULYA A.Spark plasma sintering of TiCN nanopowders in non-linear heating and loading regimes[J]. Journal of the European Ceramic Society, 2011, 31(5): 809-813. [20] KIM W, SUH C Y, ROH K M, et al.High-frequency induction heated sintering of High-energy ball milled TiC0.5N0.5 powders and mechanical properties of the sintered products[J]. Ceramics International, 2013, 39(1): 585-591. [21] 高凌燕, 周书助, 伍小波. 碳含量对超细Ti(C,N)基金属陶瓷的结构及性能的影响[J]. 包装学报, 2013, 5(3): 10-15. GAO Lingyan, ZHOU Shuzhu, WU Xiaobo. Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C,N)-based cermets[J]. Packaging Journal, 2013, 5(3): 10-15. [22] FOX R, NILSSON R.Binderless tungsten carbide carbon control with pressureless sintering[J]. International Journal of Refractory Metals and Hard Materials, 2018, 76: 82-89. [23] ZHENG Y, LIU W, WANG S, et al.Effect of carbon content on the microstructure and mechanical properties of Ti(C,N)-based cermets[J]. Ceramics International, 2004, 30(8): 2111-2115. [24] BESHARATLOO H, DE NICOLÁS M, WHEELER J M, et al. Carbon addition effects on microstructure and small-scale hardness for Ti(C,N)-FeNi cermets[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 105064-105073. [25] LIU C, LIN N, HE Y.Influence of Mo2C and TaC additions on the microstructure and mechanical properties of Ti(C,N)-based cermets[J]. Ceramics International, 2016, 42(2): 3569-3574. [26] XU X, ZHENG Y, ZHANG G, et al.Effect of WC addition and cooling rate on microstructure, magnetic and mechanical properties of Ti(C0.6,N0.4)-WC-Mo-Ni cermets[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105001-105008. [27] LAY S, ANTONI-ZDZIOBEK A, PöTSCHKE J, et al. Microstructural investigations in binderless tungsten carbide with grain growth inhibitors[J]. International Journal of Refractory Metals and Hard Materials, 2020, 93: 105340-105349. [28] NINO A, MORIMURA K, SUGIYAMA S, et al.Effects of C and NbC additions on the microstructure and mechanical properties of binderless WC ceramics[C]// FUH Y K, YAMADA K. Key Engineering Materials Vol. 749. Switzerland: Trans Tech Publications Ltd, 2017, 205-210. [29] SHIMADA S, KOZEKI M.Oxidation of TiC at low temperatures[J]. Journal of Materials Science, 1992, 27(7): 1869-1875. [30] KURLOV A, GUSEV A.Oxidation of tungsten carbide powders in air[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 300-307. [31] WEI C, SONG X, FU J, et al.Effect of carbon addition on microstructure and properties of WC-Co cemented carbides[J]. Journal of Materials Science & Technology, 2012, 28(9): 837-843. [32] CHA S I, HONG S H.Microstructures of binderless tungsten carbides sintered by spark plasma sintering process[J]. Materials Science and Engineering A, 2003, 356(1/2): 381-389. [33] GIRARDINI L, ZADRA M, CASARI F, et al.SPS binderless WC powders, and the problem of sub carbide[J]. Metal Powder Report, 2008, 63(4): 18-22. [34] TANG W, ZHANG L, ZHU J F, et al.Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 90-97. [35] XIANG D, LIU Y, TU M, et al.Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(1): 111-114. [36] XIANG D, LIU Y, ZHAO Z, et al.Reaction sequences and influence factors during preparation of Ti(C,N) powders[J]. Journal of Alloys and Compounds, 2007, 429(1/2): 264-269. [37] XIONG J, GUO Z, SHEN B, et al.The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J]. Materials & Design, 2007, 28(5): 1689-1694. |
|
|
|