|
|
Effects of counterpart materials on the current-carrying friction and wear properties of copper-graphite composites |
WU Haihong1,2,3, WANG Nenghui2, ZHANG Lisong2, YE Jiayu2, WANG Chuanfeng2, TU Youwang3, KANG Xiao3 |
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2. CSSC Jiujiang Marine Equipment (Group) Co.,Ltd., Jiujiang 332008, China; 3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract To investigate the current-carrying friction and wear properties and underlying mechanisms of copper-graphite composites against different counterpart materials, two types of copper-graphite composites with varying graphite contents were prepared using the pressure sintering method. T2 copper, QCr0.8 copper-zirconium alloy, and hard gold-plated copper were selected as counterpart materials for current-carrying friction and wear tests. The microstructure, hardness, and friction and wear properties of the materials were examined using scanning electron microscopy, nanoindentation, surface profilometry, and pin-on-disk friction and wear test apparatus. The results show the average friction factors of the copper-graphite composites range between 0.4 and 0.5, the wear rates are on the order of 10-13 m3/(N·m), the average voltage drop ranges from 0.7 V to 1.4 V, and the average electrical noise ranges from 0.2 mV to 0.7 mV when grinding with the three counterpart materials. Among these, the copper-graphite composite exhibits the best current-carrying friction and wear properties when paired with QCr0.8
|
Received: 09 July 2024
Published: 18 November 2024
|
|
|
|
|
[1] 杨健, 王屹, 王智勇, 等. 单点系泊系统用中压电滑环滑动电接触材料的研究进展[J]. 材料开发与应用, 2022, 37(1): 77-83. YANG Jian, WANG Yi, WANG Zhiyong, et al.Research progress on sliding electrical contact materials for medium voltage slip rings in single point mooring system[J]. Development and Application of Materials, 2022, 37(1): 77-83. [2] 熊雪, 董海防, 俞力峰, 等. 单点系泊系统高压电滑环电流传输单元方案研究[J]. 船电技术, 2022, 42(2): 35-39. XIONG Xue, DONG Haifang, YU Lifeng, et al.Search on the scheme of high-voltage power slip ring current transmission unit in single-point mooring system[J]. Marine Electric & Electronic Engineering, 2022, 42(2): 35-39. [3] WANG B, HONG K, FENG C, et al.The investigation of internal turret single point mooring slip ring structure design[J]. IOP Conference Series: Earth and Environmental Science, 2019, 252(2): 022060. [4] GRANDIN M, WIKLUND U.Wear and electrical performance of a slip-ring system with silver-graphite in continuous sliding against PVD coated wires[J]. Wear, 2016, 348: 138-147. [5] 李牧, 李鹏, 刘诗学, 等. FPSO单点滑环系统风险分析[J]. 船海工程, 2022, 51(2): 30-33. LI Mu, LI Peng, LIU Shixue, et al.Risk assessment method of FPSO swivel equipment[J]. Ship & Ocean Engineering, 2022, 51(2): 30-33. [6] 孙恪成, 李牧, 李鹏, 等. FPSO系泊系统失效原因探讨[J]. 天津科技, 2020, 47(1): 49-51. SUN Kecheng, LI Mu, LI Peng, et al.Discussion on failure causes of FPSO moring system[J]. Tianjin Science & Technology, 2020, 47(1): 49-51. [7] 孙振, 许永祥, 朱佳敏, 等. 树脂包覆石墨含量对铜基复合材料组织和性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(6): 534-544. SUN Zhen, XU Yongxiang, ZHU Jiamin, et al.Tribological properties and wear mechanism of copper matrix composite[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(6): 534-544. [8] 刘滩, 肖鹏, 方华婵, 等. 石墨表面改性对铜基摩擦材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(2): 195-204. LIU Tan, XIAO Peng, FANG Huachan, et al.Effect of graphite surface modification on microstructure and properties of Cu-based friction materials[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 195-204. [9] 冉旭, 黄显峰, 段利利, 等. 铜-石墨复合材料的摩擦学性能和磨损机理[J]. 材料导报, 2012, 26(8): 33-38. RAN Xu, HUANG Xianfeng, DUAN Lili, et al.Tribological properties and wear mechanism of copper-graphite composite[J]. Materials Reports, 2012, 26(8): 33-38. [10] CHO K H, HONG U S, LEE K S, et al.Tribological properties and electrical signal transmission of copper-graphite composites[J]. Tribology Letters, 2007, 27: 301-306. [11] 李炎森, 张坤, 张国洪, 等. 不同石墨含量铜基摩擦材料耐热特性及摩擦性能研究[J]. 粉末冶金工业, 2023, 33(6): 68-73. LI Yansen, ZHANG Kun, ZHANG Guohong, et al.Heat resistance and friction properties of copper-based friction materials with different graphite content[J]. Powder Metallurgy Industry, 2023, 33(6): 68-73. [12] 刘犇, 张东卿, 李香粉, 等. 高石墨含量鳞片石墨/铜复合材料的微观结构和性能(英文)[J]. 新型炭材料, 2020, 35(1): 58-65. LIU Ben, ZHANG Dongqing, LI Xiangfen, et al.The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake[J]. New Carbon Materials, 2020, 35(1): 58-65. [13] 徐晓峰, 杨晓倩, 杨正海. 石墨含量对铜/石墨材料高速载流摩擦性能的影响[J]. 河南科技大学学报(自然科学版), 2013, 34(5): 1-18. XU Xiaofeng, YANG Xiaoqian, YANG Zhenghai.Influence of graphite contents on tribo-electric properties of Cu/graphite materials under high speed[J]. Journal of Henan University of Science and Technology (Natural Science), 2013, 34(5): 1-18. [14] 张俊龙, 陈亚军, 李晨, 等. 石墨含量对铜基石墨自润滑复合材料摩擦过程中石墨润滑膜的影响[J]. 轴承, 2022(2): 31-34. ZHANG Junlong, CHEN Yajun, LI Chen, et al.Effect of graphite contents on graphite lubricating film during friction of copper matrix graphite self-lubricating composites[J]. Bearing, 2022(2): 31-34. [15] 胡铮, 张楠, 张万昊, 等. 石墨含量对铜基摩擦材料摩擦磨损性能的影响[J]. 粉末冶金技术, 2020, 38(6): 409-413. HU Zheng, ZHANG Nan, ZHANG Wanhao, et al.Effect of graphite content on friction and wear properties of copper-based friction materials[J]. Powder Metallurgy Technology, 2020, 38(6): 409-413. [16] KANG K J, YU B, DENG G Y, et al.Effect of counterpart materials on tribological behaviors of copper impregnated carbon/carbon composite under electric current condition[J]. Ceramics International, 2023, 49(18): 30008-30018. [17] 邓陈虹, 陈广志, 葛启录. 配对材料对锡青铜基颗粒增强复合材料摩擦磨损性能的影响[J]. 材料工程, 2005(11): 28-31. DENG Chenhong, CHEN Guangzhi, GE Qilu.Effect of different pairing materials on friction and wear properties of particles reinforced bronze-based composite[J]. Journal of Materials Engineering, 2005(11): 28-31. [18] 袁国洲, 姚萍屏, 刘槟. 对偶材料对航空刹车副摩擦性能的影响[J]. 粉末冶金材料科学与工程, 2000(1): 64-68. YUAN Guozhou, YAO Pingping, LIU Bin.Effects of couple materials on frictional behaviour of airplane brake pairs[J]. Materials Science and Engineering of Powder Metallurgy, 2000(1): 64-68. [19] 甘子旸, 刘咏, 吕信群, 等. 铅对铜基固体自润滑材料的润滑机理[J]. 粉末冶金材料科学与工程, 2018, 23(4): 347-353. GAN Ziyang, LIU Yong, LÜ Xinqun, et al.Lubrication mechanism of copper-based solid self-lubricating materials by lead[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(4): 347-353. [20] TU Y W, ZHANG L, ZHANG X, et al. Improving the mechanical and tribological behavior of Cu-WS2 self-lubricating composite with the addition of WS2 nanosheet[J]. Wear, 2023, 530/531: 205013. [21] ZHOU Y K, ZHU R, ZUO X, et al.Tribo-electrical behaviors of CNTs-MoS2/Cu composites under sliding electrical contact with brass[J]. Tribology International, 2023, 180: 108207. [22] 阮建明, 黄培云. 粉末冶金原理[M]. 北京: 机械工业出版社, 2012: 326-327. RUAN Jianming, HUANG Peiyun.Powder Metallurgy Principle[M]. Beijing: China Machine Press, 2012: 326-327. [23] 饶黄云, 吕波, 黄晓泽, 等. 电桥法测电阻实验的一些探讨[J]. 电子质量, 2022(10): 31-34. RAO Huangyun, LÜ Bo, HUANG Xiaoze, et al.Some discussions on resistance measurement experiment by bridge method[J]. Electronics Quality, 2022(10): 31-34. [24] 于潇, 郭志猛, 郝俊杰, 等. 风电用铜基粉末冶金制动闸片的制备与性能[J]. 粉末冶金材料科学与工程, 2014, 19(1): 66-70. YU Xiao, GUO Zhimeng, HAO Junjie, et al.Preparation and properties of copper-based powder metallurgy brake pad for wind turbine[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(1): 66-70. [25] 郑锦, 何美凤, 刘平, 等. 石墨烯微片对放电等离子烧结制备铜基摩擦材料性能的影响[J]. 有色金属材料与工程, 2021, 42(3): 5-12. ZHENG Jin, HE Meifeng, LIU Ping, et al.Effect of graphene nanoplatelets on the properties of copper-based friction materials prepared by spark plasma sintering[J]. Nonferrous Metal Materials and Engineering, 2021, 42(3): 5-12. [26] 钱刚, 凤仪, 张学斌, 等. 铜基自润滑电接触复合材料研究综述[J]. 表面技术, 2016, 45(1): 7-12. QIAN Gang, FENG Yi, ZHANG Xuebin, et al.Review on research of Cu-based self-lubricating electrical contact composites[J]. Surface technology, 2016, 45(1): 7-12. [27] KESTURSATYA M, KIM J K, ROHATGI P K.Wear performance of copper-graphite composite and a leaded copper alloy[J]. Materials Science and Engineering A, 2003, 339(1/2): 150-158. [28] SONG Y J, YANG Z H, JIAO J L, et al.Research on damage optimization of copper-carbon gradient composite materials for current-carrying friction[J]. Tribology International, 2024, 195: 109635. |
|
|
|