|
|
Effects of SPS process parameters on microstructure and high-temperature oxidation resistance of ZrB2-MoSi2-SiC composite ceramics |
ZHANG Yudong1,2, LI Jiwen1, WANG Nannan1,2, PAN Kunming2, ZHANG Liangliang1,2 |
1. Material Science & Engineering School, Henan University of Science & Technology, Luoyang 471023, China; 2. National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, China |
|
|
Abstract ZrB2-MoSi2-SiC composite ceramics (ZMS15 ceramics) were prepared by spark plasma sintering (SPS) at the sintering temperature of 1 700-2 000 ℃, heating rate of 75-150 ℃/min and holding time of 3-10 min. The effects of sintering temperature, heating rate and holding time on the relative density and the oxidation resistance at 1 200 ℃ of the composite ceramics were studied. The results show that the relative density of ZrB2-MoSi2-SiC composite ceramics increases with the increase of sintering temperature and heating rate, and the relative density reaches the maximum value when the holding time is 7 min. ZMS15 ceramic forms a double-layer structure during oxidation. The outer layer is glassy SiO2 layer, and the inner layer is granular ZrO2 layer. With increasing sintering temperature, the high temperture oxidation resistance of the material increases. The optimal SPS process for ZrB2-MoSi2-SiC composite ceramics is sintering temperature of 2 000 ℃, heating rate of 125 ℃/min, and holding time of 7 min. The relative density of the ceramics is greater than 98.5%, and the mass change is less than 8 mg/cm2 after oxidation at 1 200 ℃ for 72 h.
|
Received: 04 September 2020
Published: 18 January 2021
|
|
|
|
|
Cite this article: |
ZHANG Yudong,LI Jiwen,WANG Nannan, et al. Effects of SPS process parameters on microstructure and high-temperature oxidation resistance of ZrB2-MoSi2-SiC composite ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 505-512.
|
|
|
|
URL: |
http://pmbjb.csu.edu.cn/EN/ OR http://pmbjb.csu.edu.cn/EN/Y2020/V25/I6/505 |
[1] 张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展[J]. 科学通报, 2015, 60(3): 257-266. ZHANG Xinghong, HU Ping, HAN Jiecai, et al. Research progress of ultra-high temperature ceramic composites[J]. Chinese Science Bulletin, 2015, 60(3): 257-266. [2] 周庭, 谢征芳. ZrB2陶瓷制备研究进展[J]. 化工进展, 2013(10): 2434-2439. ZHOU Ting, XIE Zhengfang. Research progress of ZrB2 ceramic preparation[J]. Chemical Industry Progress, 2013(10): 2434-2439. [3] 周长灵, 程之强, 刘福田, 等. 硼化锆基碳化硅复相陶瓷[J].硅酸盐学报, 2006, 34(8): 1017-1021. ZHOU Changling, CHENG Zhiqiang, LIU Futian, et al. Zirconium boride silicon carbide composite ceramics[J]. Acta Silicate, 2006, 34(8): 1017-1021. [4] LI N, HU P, ZHANG X H, et al.Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2-SiC composites at 1 500 ℃[J]. Corrosion Science, 2013, 73(8): 44-53. [5] 邓晓军, 谢征芳. 硼化锆基超高温陶瓷研究进展[J]. 现代化工, 2012, 32(7): 20-25. DENG Xiaojun, XIE Zhengfang. Research progress of zirconium boride based ultra-high temperature ceramics[J]. Modern Chemical Industry, 2012, 32(7): 20-25. [6] 宋杰光, 罗红梅, 杜大明, 等. 二硼化锆陶瓷材料的研究及展望[J]. 材料导报, 2009, 23(3): 43-52. SONG Jieguang, LUO Hongmei, DU Daming, et al. Research and prospect of zirconium diboride ceramic materials[J]. Journal of Materials, 2009, 23(3): 43-52. [7] GUO S Q, MIZUGUCHI T S, AOYAGI T S, et al.Quantitative electron microprobe characterizations of oxidized ZrB2 containing MoSi2 additives[J]. Oxidation of Metals, 2009, 72(5/6): 335-345. [8] 王振涛, 王刚, 王微, 等. 粉体粒径及烧结工艺对ZrB2陶瓷致密化行为与晶粒长大的影响[J]. 人工晶体学报, 2019, 48(8): 1516-1521. WANG Zhentao, WANG Gang, WANG Wei, et al. Effects of particle size and sintering process on densification and grain growth of ZrB2 ceramics[J]. Journal of Synthetic Crystals, 2019, 48(8): 1516-1521. [9] POURASAD J, EHSANI N, VALEFI Z.Oxidation resistance of a SiC-ZrB2 coating prepared by a novel pack cementation on SiC-coated graphite[J]. Journal of Materials Science, 2017, 52(3): 1639-1646. [10] 王圆圆, 范景莲, 陆琼, 等. ZrB2含量和烧结温度对ZrC-ZrB2复合材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(2): 157-163. WANG Yuanyuan, FAN Jinglian, LU Qiong, et al. Effect of ZrB2 content and sintering temperature on microstructure and properties of ZrC-ZrB2 composites[J]. Powder Metallurgy Materials Science and Engineering, 2020, 25(2): 157-163. [11] 邹冀, 张国军, 傅正义. 超高温陶瓷的无压烧结致密化与微结构调控[J]. 稀有金属, 2019, 43(11): 1221-1235. ZOU Ji, ZHANG Guojun, FU Zhengyi. Non-pressure sintering densification and microstructure regulation of ultra-high temperature ceramics[J]. Rare Metals, 2019, 43(11): 1221-1235. [12] 刘春荣, 刘胜林, 张唯玮, 等. SPS技术在粉末冶金材料中的应用现状[J]. 粉末冶金工业, 2017, 27(6): 52-56. LIU Chunrong, LIU Shenglin, ZHANG Weiwei, et al. Application status of SPS technology in powder metallurgy materials[J]. Powder Metallurgy Industry, 2017, 27(6): 52-56. [13] 李麒, 郭丰伟, 曹腊梅, 等. SPS烧结温度对ZrB2-SiC复合陶瓷性能的影响[J]. 航空材料学报, 2018, 38(4): 87-92. LI Qi, GUO Fengwei, CAO Lamei, et al. Effect of SPS sintering temperature on the properties of ZrB2-SiC composite ceramics [J]. Journal of Aeronautical Materials, 2018, 38(4): 87-92. [14] 周瑞, 孙桂芳. 烧结温度对M3:2高速钢SPS烧结组织和性能的影响[J]. 热加工工艺, 2013(12): 54-57. ZHOU Rui, SUN Guifang. Effect of sintering temperature on sintering structure and properties of M3:2 high-speed steel SPS[J]. Hot Working Technology, 2013(12): 54-57. [15] 曹建岭, 徐强, 朱时珍, 等. 烧结温度对ZrB2-SiC超高温陶瓷致密化的影响[J]. 稀有金属材料与工程, 2007, 36(A2): 171- 173. CAO Jianling, XU Qiang, ZHU Shizhen, et al. Effect of sintering temperature on densification of ZrB2-SiC ultra-high temperature ceramics[J]. Rare Metal Materials and Engineering, 2007, 36(A2): 171-173. [16] 王超, 梁军, 栾旭, 等. ZrB2+SiC陶瓷高温氧化过程中SiC耗尽层的形成机制研究[J]. 稀有金属材料与工程, 2009, 38(增2): 886-889. WANG Chao, LIANG Jun, LUAN Xu, et al. Formation mechanism of SiC depletion layer in ZrB2+SiC ceramics during high-temperature oxidation[J]. Rare Metal Materials and Engineering, 2009, 38(Suppl 2): 886-889. [17] 刘雪梅, 张久兴, 宋晓艳. 单质导电材料SPS过程中颈部形成机理[J]. 中国有色金属学报, 2006, 16(3): 422-427. LIU Xuemei, ZHANG Jiuxing, SONG Xiaoyan. Mechanism of neck formation in single conductive materials during SPS[J]. Chinese Journal of Nonferrous Metals, 2006, 16(3): 422-427. [18] SCITI D, GUICCIARD S, BELLOSI A, et al.Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite[J]. Journal of the American Ceramic Society, 2006, 89(7): 2320-2322. [19] 付少利, 刘平, 陈小红, 等. SPS工艺对CuCr/CNTs复合材料组织与性能的影响[J]. 有色金属材料与工程, 2017, 38(2): 78- 84. FU Shaoli, LIU Ping, CHEN Xiaohong, et al. Effect of SPS processes on the microstructure and properties of CuCr/CNTs composites[J]. Nonferrous Materials and Engineering, 2017, 38(2): 78-84. [20] 刘晓军, 袁铁锤, 李瑞迪, 等. 升温速率对放电等离子烧结铁粉致密化的影响[J]. 粉末冶金材料科学与工程, 2017, 22(2): 177-183. LIU Xiaojun, YUAN Tiechui, LI Ruidi, et al. Effect of heating rate on densification of iron powder in discharge plasma sintering[J]. Powder Metallurgy Materials Science and Engineering, 2017, 22(2): 177-183. [21] GUO S Q, MIZUGUCHI T, IKEGAMI M, et al.Oxidation behavior of ZrB2-MoSi2-SiC composites in air at 1 500 ℃[J]. Ceramics International, 2011, 37(2): 585-591. |
|
|
|