|
|
The effects of Ni content on the microstructure and properties of layered TiC-Ni/EP composites |
HOU Junfeng1, WU Jisi2, JIANG Wenli1, WANG Wenhua2, WU Shangyu2 |
1. School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China; 2. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China |
|
|
Abstract To address the problem that low thermal conductivity and high thermal expansion coefficient of substrate materials for electronic packaging, the layered porous TiC-Ni frameworks were prepared by ice template method, and then layered TiC-Ni/EP composites were prepared through infiltrating epoxy (EP) into the pores of porous frameworks via vacuum impregnation method in this paper. Scanning electron microscope, universal mechanical testing machine, and thermodilatometer were used to study the effects of Ni content on the pore morphology, laminar structure characteristics of the layered porous TiC-Ni frameworks and the microstructure, mechanical, and thermal properties of the composites. The results show that the interlayer spacing and wall thickness of porous frameworks increase, the compressive strength and bending strength of the composites decrease with the increase of Ni content, while the thermal conductivity and thermal expansion coefficient of composites increase. The porous frameworks and the composite with φ(Ni)=2% have the best laminar structure characteristics, the thermal conductivity of the composite is 2.24 W/(m·K), and the thermal expansion coefficient is 30.23×10-6 K-1.
|
Received: 20 December 2024
Published: 15 April 2025
|
|
|
|
|
[1] 陆琪, 刘英坤, 乔志壮, 等. 陶瓷基板研究现状及新进展[J]. 半导体技术, 2021, 46(4): 257-268. LU Qi, LIU Yingkun, QIAO Zhizhuang, et al.Research status and new progress of ceramic substrate[J]. Semiconductor Technology, 2021, 46(4): 257-268. [2] 蒋泽祺. 高性能AlSiC电子封装基板材料的制备[D]. 广州: 华南理工大学, 2022. JIANG Zeqi.Preparation of high performance AlSiC electronic packaging substrate materials[D]. Guangzhou: South China University of Technology, 2022. [3] 张凤. 封装基板技术在微电子产品中的应用[J]. 集成电路应用, 2024, 41(6): 8-9. ZHANG Feng.Application of packaging substrate technology in microelectronic products[J]. Application of IC, 2024, 41(6): 8-9. [4] 程浩, 陈明祥, 罗小兵, 等. 电子封装陶瓷基板[J]. 现代技术陶瓷, 2019, 40(4): 265-292. CHENG Hao, CHEN Mingxiang, LUO Xiaobing, et al.Ceramic substrate for electronic packaging[J]. Advanced Ceramics, 2019, 40(4): 265-292. [5] 张阳琳, 罗自贵, 胡晓明, 等. Al2O3含量对放电等离子烧结Al2O3/Cu复合材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(1): 9-14. ZHANG Yanglin, LUO Zigui, HU Xiaoming, et al.Effects of Al2O3 content on microstructure and properties of Al2O3/Cu composite materials prepared by spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 9-14. [6] ZHOU Y C, LIU F, WANG H.Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review[J]. Polymer Composites, 2017, 38(4): 803-813. [7] 秦典成, 梁可为, 陈爱兵, 等. 金属基板结构对LED散热性能的影响[J]. 中国材料进展, 2019, 38(7): 717-721. QIN Diancheng, LIANG Kewei, CHEN Aibing, et al.Influence of MCPCB’s structure on heat dissipation performance of LED lamp[J]. Materials China, 2019, 38(7): 717-721. [8] 吴运香, 雷霆, 高纪明, 等. 氮化硅晶须/氮化铝颗粒/聚酰亚胺复合材料的制备及性能[J]. 粉末冶金材料科学与工程, 2021, 26(3): 250-256. WU Yunxiang, LEI Ting, GAO Jiming, et al.Preparation and properties of AlN/Si3N4/PI composites[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 250-256. [9] GUO F J, XUE K L, YOU T, et al.Magnetically assisted construction of Al2O3 platelets dual network and its excellent thermal conductivity in epoxy resin composites[J]. Composites Part A: Applied Science and Manufacturing, 2024, 179: 107988. [10] 田双永, 徐泽, 徐振, 等. 层状复合材料制备工艺现状及未来发展展望[J]. 铝加工, 2024(2): 3-10. TIAN Shuangyong, XU Ze, XU Zhen, et al.Current situation and future development prospect of preparation technology of laminar composites[J]. Aluminium Fabrication, 2024(2): 3-10. [11] 师阿维, 蒙笠, 郭海艳. 高热导率材料的发展和应用[J]. 热处理, 2023, 38(6): 1-6. SHI Awei, MENG Li, GUO Haiyan.Development and application of materials with high thermal conductivity[J]. Heat Treatment, 2023, 38(6): 1-6. [12] XIONG K, SUN Z P, HU J C, et al.Polyimide-assisted fabrication of highly oriented graphene-based all-carbon foams for increasing the thermal conductivity of polymer composites[J]. New Carbon Materials, 2024, 39(2): 271-282. [13] 桂晓凡, 石姗姗, 张磊, 等. 冻干取向法制备高导热复合材料研究进展[J]. 工程塑料应用, 2023, 51(4): 155-159. GUI Xiaofan, SHI Shanshan, ZHANG Lei, et al.Research progress of freeze-casting for the preparation of high thermal conductivity composites[J]. Engineering Plastics Application, 2023, 51(4): 155-159. [14] LI Y, WEI W, WANG Y, et al.Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity[J]. Journal of Materials Chemistry C, 2019, 7(38): 11783-11789. [15] WEI Z L, XIE W Q, GE B Z, et al.Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements[J]. Composites Science and Technology, 2020, 199: 108304. |
|
|
|