|
|
Preparation and property of low loss niobate microwave dielectric ceramics |
ZHENG Haoran1,2, QIU Rong2,3, YANG Pan4, ZHAO Xiaofang2, YU Shihui4 |
1. School of Automotive and Engineering Machinery, Guangdong Communication Polytechnic, Guangzhou 510000, China; 2. International School of Microelectronics, Dongguan University of Technology, Dongguan 523000, China; 3. College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518000, China; 4. School of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471000, China |
|
|
Abstract In order to obtain niobate-based microwave dielectric ceramics with lower loss, Zn[(Ge0.5Mo0.5)xNb1-x]2O6 (x=0.05, 0.10, 0.15, 0.20) niobate microwave dielectric ceramics were prepared by solid-state reaction method with ZnO, GeO2, MoO3, and Nb2O5 as main raw materials. XRD, SEM, and vector network analyzer were used to characterize the phase composition, microscopic morphologies, and dielectric properties of materials, respectively. The results show that when the sintering temperature is 1 180 ℃, the surface morphology of microwave dielectric ceramics with x=0.05 is the most compact, with the maximum relative density of 94.58%, and has good microwave dielectric properties, dielectric constant εr is 21.7, quality factor Qf is 64 610 GHz, and temperature coefficient of resonant frequency τf is -81.2×10-6/℃.
|
Received: 02 February 2024
Published: 31 May 2024
|
|
|
|
|
[1] 黄玲, 王倩. 新型铌酸盐基介质材料的制备及性能评价[J]. 当代化工, 2022, 51(12): 2864-2868. HUANG Ling, WANG Qian.Preparation and performance evaluation of new niobate-based dielectric materials[J]. Contemporary Chemical Industry, 2022, 51(12): 2864-2868. [2] 周济, 李龙土, 熊小雨. 我国电子陶瓷技术发展的战略思考[J]. 中国工程科学, 2020, 22(5): 20-27. ZHOU Ji, LI Longtu, XIONG Xiaoyu.Strategic thinking on the development of electronic ceramics technology in China[J]. Strategic Study of CAE, 2020, 22(5): 20-27. [3] SEBASTIAN M T, UBIC R, JANTUNEN H.Low-loss dielectric ceramic materials and their properties[J]. International Materials Reviews, 2015, 60(7): 392-412. [4] WANG D, LI L X, DU M K.Ultra-low dielectric loss lithium-based, temperature stable microwave dielectric ceramics[J]. Ceramics International, 2022, 48(1): 1394-1401. [5] RICHTMYER R D.Dielectric resonators[J]. Journal of Applied Physics, 1939, 10(6): 391-398. [6] XIONG Z H, ZHANG Y, NIYATO D, et al.Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 44-52. [7] LI J, ZHANG Z W, TIAN Y F, et al.Crystalstructure and microwave dielectric properties of a novel rock-salt type Li3MgNbO5 ceramic[J]. Journal of Materials Science, 2020, 55: 15643-15652. [8] 谭可, 宋涛, 沈涛, 等. 低介电常数微波介质陶瓷的研究进展[J]. 现代技术陶瓷, 2022, 43(1): 11-29. TAN Ke, SONG Tao, SHEN Tao, et al.Research progress of microwave dielectric ceramics with low dielectric constant[J]. Advanced Ceramics, 2022, 43(1): 11-29. [9] BOULOGEORGOS A A A, ALEXIOUS A, MERKLE T, et al. Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G[J]. IEEE Communications Magazine, 2018, 56(6): 144-151. [10] 王刚. 低损耗铌酸盐系微波介质材料低温烧结与性能调控研究[D]. 成都: 电子科技大学, 2022. WANG Gang.Study on low temperature sintering and performance control of low loss niobate microwave dielectric materials[D]. Chengdu: University of Electronic Science and Technology of China, 2022. [11] 李柏辉, 罗可人, 张鹤瀛, 等. ANb2O6 (A=Ca, Mg, Co, Ni)型铌酸盐陶瓷的制备及其热/力学性质研究[J]. 航空制造技术, 2021, 64(16): 103-110. LI Bohui, LUO Keren, ZHANG Heying, et al.Preparation and thermal/mechanical properties of ANb2O6 (A=Ca, Mg, Co, Ni) niobate ceramics[J]. Aeronautical Manufacturing Technology, 2021, 64(16): 103-110. [12] 刘小雪, 蔡苇, 黄瑞, 等. ANbO3 (A=K, Na,Ag)材料光催化性能研究进展[J]. 中国陶瓷, 2022, 58(8): 1-6. LIU Xiaoxue, CAI Wei, HUANG Rui, et al.Advances in photocatalytic properties of ANbO3 (A=K, Na, Ag) materials[J]. China Ceramics, 2022, 58(8): 1-6. [13] 黄琦, 郑勇, 吕学鹏. 微波介质陶瓷介电机理研究进展[J]. 电子元件与材料, 2016(1): 1-6. HUANG Qi, ZHENG Yong, LÜ Xuepeng.Research progress on dielectric mechanism of microwave dielectric ceramics[J]. Electronic Components and Materials, 2016(1): 1-6. [14] MAEDA M, YAMAMURA T, IKEDA T.Dielectric characteristics of several complex oxide ceramics at microwave frequencies[J]. Japanese Journal of Applied Physics, 1987, 26(S2): 76. [15] 杨浛. 新型铌酸盐微波介质陶瓷的制备与改性研究[D]. 成都: 电子科技大学, 2020. YANG Han.Preparation and modification of new niobate microwave dielectric ceramics[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [16] 廖擎玮. 超低损耗AB(Nb,Ta)2O8型微波介质陶瓷结构与性能的研究[D]. 天津: 天津大学, 2012. LIAO Qingwei.Study on structure and properties of ultra-low loss AB(Nb,Ta)2O8 microwave dielectric ceramics[D]. Tianjin: Tianjin University, 2012. [17] 罗伟嘉. 类金红石介质陶瓷的性能调控与损耗机理研究[D]. 天津: 天津大学, 2020. LUO Weijia.Study on performance regulation and loss mechanism of rutile-like dielectric ceramics[D]. Tianjin: Tianjin University, 2020. [18] COURTNEY W E.Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1970, 18(8): 476-485. [19] YAO G G, YAN J X, TAN J J, et al.Structure, chemical bond and microwave dielectric characteristics of novel Li3Mg4NbO8 ceramics[J]. Journal of the European Ceramic Society, 2021, 42: 6490-6494. [20] XU S R, JIANG J, CHENG Z L, et al.Temperature stable, high-quality factor Li2TiO3Li4NbO4F microwave dielectric ceramics[J]. Crystals, 2021, 11(7): 741. [21] WANG G, ZHANG D N, HUANG X, et al.Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics[J]. Journal of the American Ceramic Society. 2020, 103(1): 214-223. [22] HAN S, RYBIN M V, PITCHAPPA P, et al.Guide-mode resonances in all-dielectric terahertz metasurfaces[J]. Advanced Optical Materials, 2020, 8(3): 1900959. [23] JANNOTTI P, SUBHASH G, ZHENG J, et al.Measurement of microscale residual stresses in multi-phase ceramic composites using Raman spectroscopy[J]. Acta Materialia, 2017, 129: 482-491. [24] 赖元明. 低介低损耗LTCC微波介质材料及应用研究[D]. 成都: 电子科技大学, 2019. LAI Yuanming.Low dielectric and low loss LTCC microwave dielectric materials and their applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019. [25] BI J X, YANG C H, WU H T.Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1-xMnxZrNb2O8 (0.02≤x≤0.1) ceramics[J]. Ceramics International, 2017, 43(1): 92-98. |
|
|
|