|
|
Fabrication of silicon carbide powders prepared from C/C composite processing residues and its microstructure and properties |
YU Wenrui, ZHANG Fuqin |
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
|
|
Abstract Using C/C composite processing residue as a carbon source and thoroughly mixing with silicon powder, silicon carbide powder for single crystal growth was prepared by high-temperature synthesis method. The microstructure and surface properties of silicon carbide powder were studied. The results indicate that the crystal form of the prepared silicon carbide powder is β-SiC, and the powder partially inherits the tubular and ridge-like structures of C/C composite processing residues. In Raman spectra, the ratio of the full width at half maximum of the folded transverse optic to the folded longitudinal optic of the powder is 0.709, and its relative purity is higher than that of silicon carbide powder prepared by the same process using graphite powder as the carbon source. The silicon carbide powder has porous characteristics with a specific surface area of 25.742 6 m2/g, and can be used for physical vapor transport single crystal growth process, furthermore, its feasibility has been preliminarily verified.
|
Received: 26 January 2024
Published: 31 May 2024
|
|
|
|
|
[1] CHEN Z, HUANG A Q.Extreme high efficiency enabled by silicon carbide (SiC) power devices[J]. Materials Science in Semicond Processing, 2024, 172: 108052. [2] ZANJANI A, MONAZZAH H A.Production of replicated porous materials based on SiC: microstructure, mechanical behavior & thermal shock resistance[J]. Ceramics International, 2023, 49(23): 37523-37534. [3] CHEN R, ZHU H, HE Q, et al.Fabrication of SiC reticulated porous ceramics with dense struts by in-situ generation of SiC[J]. Journal of the European Ceramic Society, 2024, 44(2): 635-642. [4] SHE X, HUANG A Q, LUCÍA O, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [5] MONROY E, OMNÈS F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33-R51. [6] 杨凡, 谢奥林, 张贝, 等. C/C复合材料密度及预氧化处理对SiC涂层的影响[J]. 粉末冶金材料科学与工程, 2021, 26(2): 132-138. YANG Fan, XIE Aolin, ZHANG Bei, et al.Effect of the density of C/C composites and pre-oxidation process on SiC coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2): 132-138. [7] CASTELLETTO S, LEW C T K, LIN W X, et al. Quantum systems in silicon carbide for sensing applications[J]. Reports on Progress in Physics, 2024, 87(1): 014501. [8] 施尔畏. 碳化硅晶体生长与缺陷[M]. 北京: 科学出版社, 2012: 75-96. SHI Erwei.The Growth and Defects of Silicon Carbide Crystal[M]. Beijing: Science Press, 2012: 75-96. [9] TAIROV Y M, TSVETKOV V F.Investigation of growth processes of ingots of silicon carbide single crystals[J]. Journal of Crystal Growth, 1978, 43(2): 209-212. [10] WELLMANN P J.Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [11] MUEHLBAUER A, KEINER D, GALIMOVA T, et al.Analysis of production routes for silicon carbide using air as carbon source empowering negative emissions[J]. Mitigation and Adaptation Strategies for Global Change, 2024, 29(1): 4. [12] 马康夫, 王英民, 李斌, 等. 生长单晶用SiC粉料合成工艺研究进展[J]. 电子工艺技术, 2016, 37(3): 128-134. MA Kangfu, WANG Yingmin, LI Bin, et al.Development of synthesis methods and technology for SiC powder used for single crystal growth[J]. Electronics Process Technology, 2016, 37(3): 128-134. [13] ZHU H, LIU B, WU L, et al.Carbide assisted in-suit growth and formation mechanism of SiC nanowires on the surface of defined carbon fibers[J]. Materials Characterization, 2024, 207: 113556. [14] 宁丽娜, 胡小波, 王英民, 等. 硅粉形貌对人工合成高纯碳化硅粉料的影响[J]. 功能材料, 2008, 39(12): 1989-1991. NING Lina, HU Xiaobo, WANG Yingmin, et al.The influence of silicon powder morphology on artificially synthesized high-purity silicon carbide powder[J]. Journal of Functional Materials, 2008, 39(12): 1989-1991. [15] 罗昊, 张序清, 杨德仁, 等. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. LUO Hao, ZHANG Xuqing, YANG Deren, et al.Research progress on high-purity SiC powder for single crystal SiC growth[J]. Journal of Synthetic Crystals, 2021, 50(8): 1562-1574. [16] FAN G F, LI T, ZHAO L L, et al.Study on purification technology of silicon carbide crystal growth powder[J]. Materials, 2022, 15(22): 8190. [17] 高攀, 刘熙, 严成锋, 等. 用于SiC晶体生长的高纯原料的合成及性能研究[J]. 人工晶体学报, 2013, 42(5): 819-823. GAO Pan, LIU Xi, YAN Chengfeng, et al.Synthesis and characterization of high purity raw material powder for growth of SiC crystal[J]. Journal of Synthetic Crystals, 2013, 42(5): 819-823. [18] 邹林华, 黄勇, 黄伯云, 等. C/C复合材料的显微结构及其与工艺、性能的关系[J]. 新型炭材料, 2001, 16(4): 63-70. ZOU Linhua, HUANG Yong, HUANG Boyun, et al.The relationship among microstructures processing parameters and properties for carbon-carbon composites[J]. New Carbon Materials, 2001, 16(4): 63-70. [19] 肖鹏, 熊翔, 张红波, 等. C/C-SiC陶瓷制动材料的研究现状与应用[J]. 中国有色金属学报, 2005, 15(5): 667-674. XIAO Peng, XIONG Xiang, ZHANG Hongbo, et al.Progress and application of C/C-SiC ceramic braking materials[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 667-674. [20] 廖寄乔, 黄伯云, 熊翔, 等. 热解炭微观结构对C/C复合材料摩擦磨损性能的影响[J]. 粉末冶金材料科学与工程, 2003, 8(2): 114-121. LIAO Jiqiao, HUANG Boyun, XIONG Xiang, et al.The influence of microstructure of pyrolysis carbon on the friction and wear properties of C/C composite[J]. Materials Science and Engineering of Powder Metallurgy, 2003, 8(2): 114-121. [21] 张福勤, 黄启忠, 黄伯云, 等. C/C复合材料石墨化度与导电性能的关系[J]. 新型炭材料, 2001, 16(2): 45-48. ZHANG Fuqin, HUANG Qizhong, HUANG Boyun, et al.Effects of graphitization degree on the electrical conductivity of C/C composites[J]. New Carbon Materials, 2001, 16(2): 45-48. [22] SHCHERBAN N, FILONENKO S, SERGIIENKO S, et al.Morphological features of porous silicon carbide obtained via a carbothermal method[J]. International Journal of Applied Ceramic Technology, 2018, 15(1): 36-41. [23] GUMULA T, MICHALOWSKI J, BLAZEWICZ M, et al.A microstructural study of carbon-carbon composites impregnated with SiC filaments[J]. Ceramics International, 2010, 36(2): 749-753. |
|
|
|