|
|
Diffusion kinetics of BCC phase in Cr-Al and Cr-V systems |
JIN Youliang1, LIU Yuling1, DU Yong1, LIU Huixin1, WEN Shiyi1, MIN Qianhui1, DU Changfa2, ZHANG Shuyan3, CHU Mingqiang3 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China; 2. School of Mathematics and Statistics, Central South University, Changsha 410083, China; 3. Centre of Excellence for Advanced Materials, Dongguan 523808, China |
|
|
Abstract On the basis of Cr/Cr-Al and Cr/Cr-V diffusion couples together with electron probe microanalysis technique, the composition-dependent interdiffusion coefficients in BCC phases of Cr-Al and Cr-V alloys were measured between 1 273 and 1 473 K via the Sauer-Freise method, and the method of error propagation was applied to evaluate the errors of the measured interdiffusivities. Based on the available thermodynamic information, self-diffusion and impurity-diffusion mobilities, and the measured interdiffusion coefficients, the atomic mobilities for the Cr-Al and Cr-V system BCC phases are obtained by using the DICTRA (calculation of phase diagrams) software with the method of CALPHAD (diffusion controlled transformation). Furthermore, the interdiffusion coefficient and component distance curves of diffusion pairs after diffusion annealing under different conditions are predicted. By comparing the predicted results with the experimental data, it is found that the predicted interdiffusion coefficient and component distance curve are in good agreement with the experimental data. The results show that the atomic mobility parameters optimized by DICTRA software can well predict the diffusion process of the Cr-Al and Cr-V system BCC phases at different temperatures, which illustrates the reliability of the atomic mobility parameters obtained in this work. This work contributes to enriches the kinetic databases of the Ti-based alloys.
|
Received: 15 March 2021
Published: 10 November 2021
|
|
|
|
|
[1] 刘彬, 刘延斌, 杨鑫, 等. TITANIUM 2008: 国际钛工业、制备技术与应用的发展现状[J]. 粉末冶金材料科学与工程, 2009, 14(2): 67-73. LIU Bin, LIU Yanbin, YANG Xin, et al.TITANIUM 2008: Development of international titanium industry, preparation technology and applications[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(2): 67-73. [2] 金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25(02): 280-292. JIN Hexi, WEI Kexiang, LI Jianming, et al.Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292. [3] JHA R, DULIKRAVICH G S.Design of high temperature Ti-Al-Cr-V alloys for maximum thermodynamic stability using self-organizing maps[J]. Metals-Open Access Metallurgy Journal, 2019, 9(5): 537-550. [4] ODUSOTE Y A.Thermodynamic assessment of the K-Na and Cr-V system[J]. Physica B (Condensed Matter), 2008, 403(17): 2877-2883. [5] 王海, 任玲, 张书源, 等. 一种高热稳定性等轴纳米晶Ti6Al4V-Cr合金及其制备方法: 112063889A[P].2020-12-11. WANG Hai, REN Ling, ZHANG Shuyuan, et al. A high thermal stability equiaxed nanocrystalline Ti6Al4V-Cr alloy and its preparation method: 112063889A[P].2020-12-11. [6] TOKUNAGA T, OHTANI H, HASEBE M. Thermodynamic assessment of the Al-Cr system by combining the first principles and CALPHAD methods[J]. Materials Science Forum, 2007, 539/543: 2407-2412 [7] LIANG Y, GUO C, LI C, et al.Thermodynamic modeling of the Al-Cr system[J]. Journal of Alloys and Compounds, 2008, 460(1/2): 314-319. [8] SMITH J, BAILEY D, CARLSON O.The Cr-V (chromium- vanadium) system[J]. Journal of Phase Equilibria, 1982, 2(4): 469-473. [9] LEE B-J.A thermodynamic evaluation of the Fe-Cr-V system[J]. Zeitschrift für Metallkunde, 1992, 83(5): 292-299. [10] CAMPBELL C E.Assessment of the diffusion mobilites in the γ′ and B2 phases in the Ni-Al-Cr system[J]. Acta Materialia, 2008, 56(16): 4277-4290. [11] JÖNSSON B. Assessment of the mobilities of Cr, Fe and Ni in BCC Cr-Fe-Ni alloys[J]. ISIJ International, 1995, 35(11): 1415-1421. [12] HU B, ZHANG W W, PENG Y, et al.Thermodynamic reassessment of the Al-Cr-Si system with the refined description of the Al-Cr system[J]. Thermochimica Acta, 2013, 561: 77-90. [13] GHOSH G.Thermodynamic and kinetic modeling of the Cr-Ti-V system[J]. Journal of Phase Equilibria, 2002, 23(4): 310-328. [14] SAUER F, FREISE V.Diffusion in binären Gemischen mit Volumenänderung[J]. Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1962, 66(4): 353-362. [15] HALL L D.An analytical method of calculating variable diffusion coefficients[J]. The Journal of Chemical Physics, 1953, 21(1): 87-89. [16] LECHELLE J, NOYAU S, AUFORE L, et al.Volume interdiffusion coefficient and uncertainty assessment for polycrystalline materials[J]. Diffusion Fundamentals, 2012, 17(2): 1-39. [17] EYRING H.Statistical mechanical treatment of the activated complex in chemical reactions[J]. Journal of Chemical Physics, 1935, 3(7): 107-115. [18] ANDERSSON J O, ÅGREN J.Models for numerical treatment of multicomponent diffusion in simple phase[J]. Journal of Applied Physics, 1992, 72(4): 1350-1355. [19] JÖNSSON B. Assessment of the mobility of carbon in fcc carbon-chromium-iron-nickel alloys[J]. Zeitschrift für Metallkunde, 1994, 85(7): 502-509. [20] ENGSTRÖM A, HÖGLUND L, ÅGREN J. Computer simulation of diffusion in multiphase systems[J]. Metallurgical and Materials Transactions A, 1994, 25(6): 1127-1134. [21] JONSSON B.On ferromagnetic ordering and lattice diffusion—a simple model[J]. Zeitschrift fur Metallkunde, 1992, 83(5): 349-355. [22] DARKEN L S.Diffusion, mobility and their interrelation through free energy in binary metallic systems (Reprinted)[J]. Metallurgical and Materials Transactions B, 2010, 41(2): 277-294. [23] LI W B, TANG B, CUI Y W, et al.Assessment of diffusion mobility for the bcc phase of the Ti-Al-Cr system[J]. Calphad- Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35(3): 384-390. |
|
|
|