|
|
First-principles calculations of Ni, Co and Al doped spinel LiMn2O4 |
LI Xu, WANG Jianchuan, DU Yong |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract For spinel LiMn2O4 doped with Ni, Co and Al, the first-principles calculations method based on density functional theory is used to analyze the magnetic configuration of the anti ferromagnetic layer and the ferromagnetic layer alternately arranged along the [001] direction rationality. The result show that this magnetic structure shows the valence distribution of Mn3+/Mn4+ alternately arranged along the [001] direction. The doping calculation shows that all three kinds of atoms tend to replace Mn in the Mn3+ layer, and the valence states of doped atoms are Ni2+, Co3+ and Al3+ after occupying the 16d site. Al and Ni doping can inhibit the Jahn-Teller distortion of doping sites, and its nearest neighbor Mn3+ is oxidized to Mn4+ after Ni doping, which is more conducive to the stability of the structure. Co doping may result in more severe Jahn-Teller aberrations. The Al3+and Co3+can significantly reduce the diffusion energy barrier of Li ion in two paths, and Ni2+ further reduce the low energy barrier path’s energy barrier under the synergistic action of Mn4+.
|
Received: 13 March 2021
Published: 10 November 2021
|
|
|
|
|
[1] GUMMOW R J, KOCK A D, THACKERAY M M.Improved capacity retention in rechargeable 4V lithium/lithium- manganese oxide (spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67. [2] GUYOMARD D, TARASCON J M.The carbon/Li1+xMn2O4 system[J]. Solid State Ionics, 1994, 69(3/4): 222-237. [3] TAKADA T, HAYAKAWA H, ENOKI H, et al. Structure and electrochemical characterization of Li1+xMn2-xO4 spinels for rechargeable lithium batteries[J]. Journal of Power Sources, 1999, 81/82: 505-509. [4] LIU T, DAI A, LU J, et al.Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery[J]. Nat Commun, 2019, 10(1): 4721. [5] NAKAYAMA M, NOGAMI M.A first-principles study on phase transition induced by charge ordering of Mn3+/Mn4+ in spinel LiMn2O4[J]. Solid State Communications, 2010, 150(29/30): 1329-1333. [6] RODRIGUEZ-CARVAJAL J, ROUSSE G, MASQUELIER C, et al.Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4[J]. Physical Review Letters, 1998, 81(21): 4660-4663. [7] LIU G, WANG Y, LI W.Synthesis and electrochemical performance of LiNi0.5Mn1.5O4 spinel compound[J]. Electrochimica Acta, 2005, 50(9): 1965-1968. [8] GUOHUA L, IKUTA H, UCHIDA T, et al.The spinel phases LiMyMn2-yO4(M=Co,Cr,Ni) as the cathode for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1996, 143(1): 178-182. [9] ARORA P, POPOV B, WHITE R E.Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(3): 807. [10] LEE Y K, PARK J, LU W.Electronic and bonding properties of LiMn2O4 spinel with different surface orientations and doping elements and their effects on manganese dissolution[J]. Journal of the Electrochemical Society, 2016, 163(7): A1359-A1368. [11] LEE Y S, KUMADA N, YOSHIO M.Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery[J]. Journal of Power Sources, 2001, 96(2): 376-384. [12] ITO Y, IDEMOTO Y, TSUNODA Y, et al.Relation between crystal structures, electronic structures, and electrode performances of LiMn2-xMxO4(M=Ni,Zn) as a cathode active material for 4V secondary Li batteries[J]. Journal of Power Sources, 2003, 119(8): 733-737. [13] LEE E, PERSSON K A.Revealing the coupled cation interactions behind the electrochemical profile of LixNi0.5Mn1.5O4[J]. Energy & Environmental Science, 2012, 5(3): 6047-6051. [14] BENEDEK R, JOHNSON C, THACKERAY M.First-principles calculations for Co-doped LiMn1. 5Ni0. 5O4 and LiMn2O4 battery electrodes[J]. Electrochemical and Solid State Letters, 2006, 9(6): A289-A291. [15] KOYAMA Y, TANAKA I, ADACHI H, et al.First principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn2O4[J]. Journal of The Electrochemical Society, 2003, 150(1): A63-A67. [16] HUANG R, IKUHARA Y H, MIZOGUCHI T, et al.Oxygen- vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles[J]. Angewandte Chemie, 2011, 123(13): 3109-3113. [17] LIU W W, WANG D, WANG Z, et al.Influence of magnetic ordering and Jahn-Teller distortion on the lithiation process of LiMn2O4[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6481. [18] OUYANG C Y, SHI S Q, LEI M S.Jahn-Teller distortion and electronic structure of LiMn2O4[J]. Journal of Alloys and Compounds, 2009, 474(1/2): 370-374. [19] A G K, B J F.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set-science direct[J]. Computational Materials Science, 1996, 6(1): 15-50. [20] KRESSE G G, FURTHMÜLLER J J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54: 11169-11186. [21] PERDEW J P, YUE W.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B: Condensed Matter, 1992, 45(23): 13244-13249. [22] WANG Y, PERDEW J P.Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling[J]. Physical Review B: Condensed Matter, 1991, 44(24): 13298. [23] ANISIMOV V I, ZAANEN J, ANDERSEN O K.Band theory and Mott insulators: Hubbard U instead of stoner I[J]. Physical Review B, 1991, 44(3): 943-954. [24] KITCHAEV D, PENG H, LIU Y, et al.Energetics of MnO2 polymorphs in density functional theory[J]. Physical Review B, 2016, 93(4): 045132-045138. [25] SHIIBA H, ZETTSU N, NAKAYAMA M, et al.Defect formation energy in spinel LiNi0.5Mn1.5O4-δ using Ab initio DFT calculations[J]. Journal of Physical Chemistry C, 2015, 119(17): 9117-9124. [26] JAIN A, ONG S P, HAUTIER G, et al.Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002-011013. [27] HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. [28] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904. [29] XIAO W, XIN C, LI S, et al.Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry A, 2018, 6(21): 9893-9898. [30] YAMAGUCHI H, YAMADA A, UWE H.Jahn-Teller transition of LiMn2O4 studied by X-ray-absorption spectroscopy[J]. Physical Review B, 1998, 58(1): 8-11. [31] SLIWKO V, MOHN P, SCHWARZ K.The electronic and magnetic structures of alpha-and beta-manganese[J]. Journal of Physics Condensed Matter, 1994, 6(32): 6557-6564. [32] MACNEIL D, LU Z, DAHN J R.Structure and electrochemistry of Li[NixCo1-2xMnx]O2(0<x<1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10): A1332-A1336. [33] SHANNON R D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
[1] |
JIN Youliang, LIU Yuling, DU Yong, LIU Huixin, WEN Shiyi, MIN Qianhui, DU Changfa, ZHANG Shuyan, CHU Mingqiang. Diffusion kinetics of BCC phase in Cr-Al and Cr-V systems[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(5): 396-403. |
|
|
|
|