|
|
Residual stress and dynamic mechanical properties of swaging deformed tungsten alloy |
LIN Zehua1, KANG Jun2, ZHOU Yonggui2, ZHOU Chengshang1, YAN Wenmin3 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Shenzhen Zhucheng Technology Co., Ltd., Shenzhen 518100, China; 3. Key Laboratory of Transient Shock Technology, No. 208 Research Institute of China Ordnance Industry, Beijing 102202, China |
|
|
Abstract 95W-3.5Ni-1.5Fe tungsten alloy was prepared by cold isostatic pressing and vacuum sintering using W, Ni and Fe powders as raw materials. Then, the swaging processing with 15%, 30% and 40% deformation was carried out. Scanning electronic microscope with electron backscattered diffraction, split Hopkinson pressure bar and live-fire target test were used to analyze the microstructure, dynamic mechanical properties and residual stress distribution of 95W-3.5Ni-1.5Fe tungsten alloy. The results show that the W particles in the tungsten alloy deform from a spherical shape to an olive shape after swaging process. The static tensile strength and hardness (HRC) of the 40% deformation tungsten alloy increase from 983 MPa and 28.9 to 1 434 MPa and 46.1 HRC respectively, and the elongation decreases from 11.9% to 4.6%. There are residual compressive stresses in the alloy, which are mainly distributed between tungsten particles and in the Ni-Fe bonding phase. The deformed tungsten alloy has a higher strain rate of 4.9% under the impact strain rate of about 1.2×103 s-1, and exhibits “self-sharpening” when penetrating the steel target.
|
Received: 28 February 2021
Published: 10 November 2021
|
|
|
|
|
[1] ZHOU C X, YI J H, LUO S D, et al.Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys[J]. Journal of Alloys and Compounds, 2009, 482(1/2): L6-L8. [2] 周承商, 易健宏, 罗述东, 等. W-Ni-Fe 高密度合金的微波烧结[J]. 中国有色金属学报, 2009, 19(9): 1601-1607. ZHOU Chengshang, YI Jianhong, LUO Shudong, et al.Microwave sintering of W-Ni-Fe heavy alloys[J]. Nonferrous Metals Society of China Transactions, 2009, 19(9): 1601-1607. [3] 周承商, 易健宏, 罗述东. 微波烧结W-Ni-Fe高密度合金的变形现象及显微组织[J]. 粉末冶金材料科学与工程 2010, 15(3): 300-304. ZHOU Chengshang, YI Jianhong, LUO Shudong.Distortion and microstructure of microwave sintered W-Ni-Fe heavy alloys[J]. Material Science and Engineering of Powder Metallurgy, 2010, 15(3): 300-304. [4] ZHOU C X, YI J H, LUO S D.Sintering high tungsten content W-Ni-Fe heavy alloys by microwave radiation[J]. Metallurgical and Materials Transactions A, 2013, 45(1): 455-463. [5] MA Y Z, ZHANG J J, LIU W S, et al.Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42. 71-76. [6] 王晖, 张小明, 白润, 等. 高钨钽合金的动态力学性能研究现状[J]. 中国钨业, 2018, 33(3): 57-60. WANG Hui, ZHANG Xiaoming, BAI Run, et al.Research status of dynamic mechanical properties of high content of Ta-W alloy[J]. China Tungsten Industry, 2018, 33(3): 57-60. [7] 吕政, 任学平, 卢成壮. 动能穿甲弹用钨合金绝热剪切带的研究进展[J]. 兵器材料科学与工程, 2014, 37(6): 134-140. LÜ Zheng, REN Xueping, LU Chengzhuang.Reasearch progress of adiabatic shear bands in tungsten heavy alloy for kinetic energy penetrators[J]. Ordnance Material Science and Engineering, 2014, 37(6): 134-140. [8] 陈海华, 张先锋, 熊玮, 等. WFeNiMo 高熵合金动态力学行为及侵彻性能研究[J]. 力学学报, 2020, 52(5): 1443-1453. CHEN Haihua, ZHANG Xianfeng, XIONG Wei.et al.Dynamic mechanical behavior and penetration peformance of WFeNiMo high-entropy alloy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. [9] 刘金旭, 李树奎, 周晓青, 等. 挤压扭转复合形变钨合金绝热剪切带内动态再结晶机制研究[J]. 稀有金属材料与工程, 2011, 40(6): 957-960. LIU Jinxu, LI Shukui, ZHOU Xiaoqing, et al.Dynamic recrystallizaiton in the shear bands of tungsten heavy alloy processed by hot-hydrostatic extrusion and hot torsion[J]. Rare Metal Materials and Engineering, 2011, 40(6): 957-960. [10] ZHOU X Q, LI S K, LIU J X.et al.Self-sharpening behavior during ballistic impact of the tungsten heavy alloy rod penetrators processed by hot-hydrostatic extrusion and hot torsion[J]. Materials Science and Engineering A, 2010. 527(18/19): 4881-4886. [11] ZHOU S C, JIAN R Z, LIANG Y J, et al.High susceptibility to adiabatic shear banding and high dynamic strength in tungsten heavy alloys with a high-entropy alloy matrix[J]. Journal of Alloys and Compounds, 2021, 859: 157796. [12] GUO W Q, LIU J X, YANG J, et al.Effect of initial temperature on dynamic recrystallization of tungsten and matrix within adiabatic shear band of tungsten heavy alloy[J]. Materials Science and Engineering A, 2011, 528(19/20): 6248-6252. [13] 王尔德, 于洋, 胡连喜, 等. W-Ni-Fe系高密度钨合金形变强化工艺研究进展[J]. 粉末冶金技术, 2004, 22(5): 303-307. WANG Erde, YU Yang, HU Lianxi, et al.Research progress in W-Ni-Fe tungsten heavy alloys by deformation strengthening processing[J]. Powder Metallurgy Technology, 2004, 22(5): 303-307. [14] 李淑华, 王富耻, 张朝晖, 等. 几种变形方式对钨合金组织性能及绝热剪切敏感性的影响[J]. 粉末冶金技术, 2006, 24(1): 60-63. LI Shuhua, WANG Fuchi, ZHANG Zhaohui, et al.Effects of several deformation methods on tungsten alloy microstructure, properties and adiabatic shear sensitivity[J]. Powder Metallurgy Technology, 2006, 24(1): 60-63. [15] 杨勇彬. 钨合金形变强化研究[C]// 2007年度学术交流会. 中国核学会核材料分会. 北京: 中国核学会, 2007. YANG Yongbin.Research on deformation strengthening of tungsten alloy[C]// 2007 Academic Conference, Nuclear Materials Branch of Chinese Nuclear Society. Beijing: Chinese Nuclear Society, 2007. [16] LIU J, LI S, FAN A, et al.Effect of fibrous orientation on dynamic mechanical properties and susceptibility to adiabatic shear band of tungsten heavy alloy fabricated through hot-hydrostatic extrusion[J]. Materials Science and Engineering A, 2008, 487(1/2): 235-242. [17] 李英雷, 胡时胜, 魏志刚, 等. 大变形锻造钨合金动态力学性能研究[J]. 兵工学报, 2003, 24(3): 378-380. LI Yinglei, HU Shisheng, WEI Zhigang, et al.Dynamic behavior of tungsten alloy forged with large deformation[J]. Acta Armamentaria, 2003, 24(3): 378-380. [18] 刘桂荣, 王玲, 王广达, 等. 钨合金轧制变形强化的组织与性能研究[J]. 兵器材料科学与工程, 2010, 33(5): 39-41. LIU Guirong, WANG Ling, WANG Guangda, et al.Microstructure and mechanical property of rolling strengthened tungsten alloy[J]. Ordnance Material Science and Engineering, 2010, 33(5): 39-41. |
|
|
|