|
|
Effect of ZrB2 content and sintering temperature on the microstructure and properties of ZrC-ZrB2 composites |
WANG Yuanyuan, FAN Jinglian, LU Qiong, HAO Ya’nan, GAO Yin |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Using ZrC and ZrB2 powders as raw materials, ZrC-ZrB2 composite ceramic bulk materials with ZrB2 content (mass fraction) of 5%, 10%, and 15% were prepared at 1 750 ℃ and 1 850 ℃ respectively by spark plasma sintering. The effects of ZrB2 content on the microstructure and properties of the composites were studied. The results show that the surface morphology of ZrC-ZrB2 composite is scaly, with the increase of ZrB2 content, the grain becomes finer. When the sintering temperature is 1 750 ℃, with the increase of ZrB2 content, the material density decreases, but the fracture toughness increases. When the content of ZrB2 is 15%, the fracture toughness reaches 11.972 MPa·m1/2, while when the content of ZrB2 is 10%, the hardness is the highest of 16.868 GPa. Compared with the ZrC-ZrB2 composites sintered at 1 750 ℃, when the sintering temperature is 1 850 ℃, recrystallization and grain growth occur, and the overall mechanical properties decrease. With the increase of ZrB2 content, the density of the composites decreases, but the size of grain decreases and mechanical properties increases.
|
Received: 16 December 2019
Published: 19 June 2020
|
|
|
|
|
[1] GASCH M J, ELLERBY D T, JOHNSON S M.Ultra high temperature ceramic composite[M]// BANSAL N P. Handbook of Ceramic Composites. New York, US: Kluver Academic Publishers, 2005: 197-224. [2] SCITI D, GUICCIARDI S, NYGREN M.Spark plasma sintering and mechanical behaviour of ZrC-based composites[J]. Scripta Materialia, 2008, 59(6): 638-641. [3] FREDERIC M, SAVINO R.Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions[J]. Journal of the European Ceramic Society, 2007, 27(16): 4797-4805. [4] YAN Y J.Pressureless sintering of high-density ZrB2-SiC ceramic composites[J]. Journal of the American Ceramic Society, 2006, 89(11): 2589-3592. [5] HOU X M, CHOU K C.Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models[J]. Journal of Alloys and Compounds, 2011, 509(5): 2395-2400. [6] 王东, 王玉金. 碳化锆陶瓷复合材料的制备、显微组织与性能[J]. 无机材料学报, 2015, 30(5): 4-13. WANG Dong, WANG Yujin.Processing, microstructure and properties of ZrC ceramic composites[J]. Journal of Inorganic Materials, 2015, 30(5): 4-13. [7] LI Ying, KATSUI H, GOTO T.Spark plasma sintering of TiC-ZrC composites[J]. Cermaics International, 2015, 41(5): 7103-7108. [8] MOON A, SUH C Y, KIM J, et al.Fabrication of TiC-ZrC-Co composites with refined microstructure using ultrafine TiC-ZrC mixture powders[J]. Journal of Alloys and Compounds, 2018, 740(3): 82-87. [9] ACICBE R B, GOLLER G.Densification behavior and mechanical properties of spark plasma-sintered ZrC-TiC and ZrC-TiC-CNT composites[J]. Journal of Materials Science, 2013, 48(6): 2388-2393. [10] FAHRENHOLT W G, HILMAS G E, TALMY I G, et al.Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364. [11] 徐强, 邵正山, 朱时珍, 等. ZrB2-ZrC超高温陶瓷激光烧蚀行为研究[J]. 稀有金属材料与工程, 2015, 44(增1): 533-536. XU Qiang, SHAO Zhengshan, ZHU Shizhen, et al.Laser ablation behavior of ZrB2-ZrC ultra high temperature ceramics[J]. Rare Metal Materials and Engineering, 2015, 44(Suppl 1): 533-536. [12] 惠泷, 崔洪芝, 宋晓杰, 等. 等离子熔覆ZrB2-ZrC/Fe复合涂层组织及耐磨性[J]. 复合材料学报, 2017, 34(11): 2500-2508. HUI Yi, CUI Hongzhi, SONG Xiaojie, et al.Microstructure and wear resistance of ZrB2-ZrC/Fe composite coatings by plasma cladding[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2500-2508. [13] KING D S, HILMAS G E, FAHRENHOLTZ W G.Plasma arc welding of ZrB2-20vol% ZrC ceramics[J]. Journal of the European Ceramic Society, 2014, 34(15): 3549-3557. [14] WANG R, LI X, WANG J, et al.A theoretical model for predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures[J]. Applied Composite Materials, 2018, 25: 635-646. [15] 林小为, 肖志瑜, 李小峰, 等. 放电等离子烧结制备超细晶WC-3Co硬质合金的组织和性能[J]. 粉末冶金材料科学与工程, 2012, 17(4): 462-467. LIN Xiaowei, XIAO Zhiyu, LI Xiaofeng, et al.Microstructure and properties of superfine WC-3Co cemented carbides prepared by spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(4): 462-467. [16] MUNIR Z.The effect of external fields on mass-transport and defect-related phenomena[J]. Journal of Materials Synthesis and Processing, 1993, 1: 3-16. [17] BELLOSI A, MONTEVERDE F, BALBO A.Fast densification of ultra-high-temperature ceramics by spark plasma sintering[J]. International Journal of Applied Ceramic Technology, 2006, 3(1): 32-40. [18] 阮建明, 黄培云. 粉末冶金原理[M]. 北京: 机械工业出版社, 2012: 252-269. RUAN Jianming, HUANG Peiyun.Principles of Powder Metallurgy[M]. Beijing: Machinery Industry Press, 2012: 252-269. [19] 石茂才, 杨生明, 马彦鹏, 等. 工业生产中Y型分子筛晶胞收缩的影响因素[J]. 石化技术与应用, 2018, 36(6): 67-70. SHI Maocai, YANG Shengming, MA Yanpeng, et al.Influencing factor of cell contraction of Y–type molecular sieve during industrial production[J]. Petrochemical Technology & Application, 2018, 36(6): 67-70. [20] ZENG Yi, WANG Dini, XIONG Xiang, et al.Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3 000 ℃[J]. Nature Communications, 2017, 8: 15836. [21] 崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007: 194-207. CUI Zhongqi, QIN Yaochun.Metallurgy and Heat Treatment[M]. Beijing: Machinery Industry Press, 2007: 194-207. [22] HAN Yong, FAN Jinglian, LIU Tao, et al.The effects of ball- milling treatment on the densification behavior of ultra-fine tungsten powder[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(6): 743-750. [23] 李廷凯, 丁子上, 吴速兴. ZrO2增韧陶瓷中四方相氧化锆的相变量、相变区宽度及其增韧机理的研究[J]. 硅酸盐学报, 1988, 16(3): 238-243. LI Tingkai, DING Zishang, WU Suxing.A study of transformation volume change, transformation width and mechanism of transformation-toughening in ZTC[J]. Journal of the Chinese Ceramic Society, 1988, 16(3): 238-243. [24] 闫亮, 杜凤山, 戴圣龙, 等.微观组织对2E12铝合金疲劳裂纹扩展的影响[J]. 中国有色金属报, 2010, 20(7): 1275-1281. YAN Liang, DU Fengshan, DAI Shenglong, et al.Effect of microstructures on fatigue crack propagation in 2E12 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1275-1281. |
|
|
|