|
|
Effect of microstructure on nanoindentation behavior of beryllium materials |
YU Yongxin, XIAO Daihong, LIU Wensheng, MA Yunzhu |
Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China |
|
|
Abstract In this paper, optical microscopy (OM), scanning electron microscopy (SEM) and nanoindentation test has been performed on the beryllium materials prepared by HIP with different microstructures. The creep properties of the beryllium were studied by measuring load-depth (P-h) curves with different loading rates. The results show that the creep behavior of beryllium is loading rate dependent, and the creep increases with increasing the loading rate. In addition, further analysis the load-depth (P-h) curves found that the microstructures of beryllium, including the pores and the content of BeO, have certain effects on the nanoindentation behavior of the beryllium metal. It’s due to the pores and BeO that changed the interaction between dislocations and particles.
|
Received: 21 September 2017
Published: 12 July 2019
|
|
|
|
|
[1] KHOMUTOV A, BARANASH V. Beryllium for fusion application-recent results[J]. Journal of Nuclear Materials, 2002, 307-311(1): 630-637. [2] HEIKO K.Themal properties of beryllium[J]. Thermochinica Acta, 2000, 345(2): 179-184. [3] WILLIAMS B.Beryllium production of brush wellman[J]. Met Powder Rep, 1986, 41(9): 671-675. [4] 王锐, 王长青, 赵春阳. 国外铍材应用与加工进展[J]. 导航与控制, 2015, 14(1): 13-19. WANG Rui, WANG Changqing, ZHAO Chunyang.Development of application and processing of beryllium abroad[J]. Navigation and Control, 2015, 14(1): 13-19. [5] ClENEBT P. How the beryllium industry is building new markets by applying isostatic processing technologies[C]. Proceedings of the 4th International Conference on Isostatic Pressing. Stratford-upon-Avon, UK: Metal Powder Report Publishing Services Ltd, 1990: 1-11. [6] ROSKILL. Information Services Ltd. The Economics of Beryllium[M]. London: Roskill Information Services Ltd, 2001: 111-119. [7] HUGHEL T J.Dimensional stability of several types of beryllium[C]. The Institute of Metals ed. The Metallurgy of Beryllium, London: Chapman and Hall Ltd, 1963: 546-552. [8] ALDINGER F, GOLD E, PETZOW G.Effect of oxide and grain size in high-purity beryllium[C]. Beryllium 1977, the 4th International Conference on Beryllium. London: The Royal Society, 1977: 2-10. [9] 许德美, 秦高梧, 李峰, 等. BeO杂质形态与分布对金属铍力学性能的影响[J]. 中国有色金属学报, 2011, 21(4): 769-776. XU Demei, QIN Gaowu, LI Feng, et al.Effects of morphology and distribution of BeO impurity on mechanical properties of metal beryllium[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4): 769-776. [10] ZHONG Jingming, GAO Yong, WANG Dongxin, et al.Micro- yield behavior and mechanism of beryllium metal[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(10): 1637-1641. [11] 王零森, 钟景明, 付晓旭, 等. 晶粒尺寸对等静压铍材力学性能的影响[J]. 中南大学学报(自然科学版), 1999, 30(4): 395-397. WANG Linsen, ZHONG Jinming, FU Xiaoxu, et al.The influence of grain size on mechanical properties of isostatically pressed beryllium materials[J]. Journal of Central South University, 1999, 30(4): 395-397. [12] 郭荻子, 林鑫, 赵永庆, 等. 纳米压痕方法在材料研究中的应用[J]. 材料导报, 2011, 25(13): 10-14. GUO Dizi, LIN Xin, ZHAO Yongqing, et al.Application of nanoindentation in the research of materials[J]. Materials Review, 2011, 25(13): 10-14. [13] 靳巧玲, 李国禄, 王海斗, 等. 纳米压痕技术在材料力学测试中的应用[J]. 表面技术, 2015, 44(12): 127-136. JIN Qiaolin, LI Guolu, WANG Haidou, et al.Application of nanoindentation technique in material mechanics test[J]. Suface Technology, 2015, 44(12): 127-136. [14] WANG Y, LIU W, MA Y, et al.Indentation size effect and micromechanics characterization of intermetallic compounds in the Au-Sn system[J]. Materials Science and Engineering A, 2014, 610(29): 161-170. [15] 宫岭, 刘婷婷, 张书婷, 等. 一种Zr基块体金属玻璃的纳米压入蠕变行为研究[J]. 上海金属, 2015, 37(3): 12-16. GONG Ling, LIU Tingting, ZHANG Shuting, et al.Creep behavior of a Zr-based bulk metallic glass during nanoindentation[J]. Shanghai Metals, 2015, 37(3): 12-16. [16] WANG J F, LI R, HUA N B.Ternary Fe-P-C metallic glass with good soft-magnetic and mechanical properties[J]. Scripta Materialia, 2011, 65(6): 536-539. [17] 张丽军. 单相高熵合金Al0.3CoCrFeNi纳米压痕蠕变和塑性变形行为研究[D]. 秦皇岛: 燕山大学, 2015. ZHANG Lijun.Research on the nanoindentation creep and plastic deformation behavior of the single-phase Al0.3CoCrFeNi high-entropy alloy[D]. Qinghuangdao: Yanshan University, 2015. [18] LI W B, HENSHALL J L, HOOPER R M, et al.The mechanisms of indentation creep[J]. Acta Metallurgica et Materialia, 1991, 39(12): 3099-3110. [19] YU P F, FENG S D, XU G S, et al. Room-temperature creep resistance of Co-based metallic glasses[J]. Scripta Materialia, 2014, 90-91(1): 45-48. [20] 孟龙晖, 杨吟飞, 何宁. 纳米压痕法测量Ti6Al4V钛合金室温蠕变应力指数[J]. 稀有金属材料与工程, 2016, 45(3): 617-622. MENG Longhui, YANG Yinfei, HE Ning.Nanoindentation measurement of creep stress exponent of Ti6Al4V alloy at room temperature[J]. Rare Metal Materials and Engineering, 2016, 45(3): 617-622. [21] KERR M, CHAWLA N.Creep deformation behavior of Sn3.5Ag solder/Cu couple at small length scales[J]. Acta Materialia, 2004, 52(15): 4527-4535. |
|
|
|