| 
					
						|  |  
    					|  |  
    					| CO2 electrochemical reduction performance of rapidly synthesized ultrafine CuSnNi nanoparticle catalysts |  
						| ZHANG Yingping1, SONG Yijian2, LI Weijie1, ZHOU Chengshang1, LIU Yong1, HAN Chao2 |  
						| 1. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; 2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
 |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
														| 
													
													    | Abstract  Four groups of CuSnNi nanoparticle catalysts with ordered structures, ultra-small sizes, and Cu, Sn, Ni atomic ratios of 1∶1∶1, 2∶1∶1, 1∶2∶1, 1∶1∶2, respectively, were synthesized by liquid-phase reduction method to investigate their CO2 electrochemical reduction performance and catalytic mechanism. The results show that all four groups of catalysts can convert CO2 into syngas (CO+H2) and HCOOH, when the atomic ratio of Cu, Sn, and Ni is 2∶1∶1, the Faraday efficiency of the catalytic products HCOOH+CO up to 40%, with the selectivity of HCOOH up to 29%, and the molar ratio of H2/CO in the syngas keeps in the range of 4-5 in all the potential ranges. The H2/CO molar ratio of the catalyst with the ratio of 1∶1∶2 has the largest adjustable range (5-17). The H2/CO molar ratio is related to the elemental ratio, but not to the entropy. The catalyst with the atomic ratio of Cu, Sn, and Ni of 2∶1∶1 has the best stability. Strong interactions between different metal atoms and surface unsaturated sites in CuSnNi can modulate the electronic structure of different metal atoms and optimize the adsorption and desorption strength of different intermediates on the catalyst surface. |  
															| Received: 09 April 2025
																	    
															    															    															    																	Published: 13 October 2025 |  
															|  |  |  |  |  
													
																												  
															| [1] DE LA TORRE P, AN L, CHANG C J. Porosity as a design element for developing catalytic molecular materials for electrochemical and photochemical carbon dioxide reduction[J]. Advanced Materials, 2023, 35(40): 2302122. [2] WANG Z T, ZHOU Y S, QIU P, et al.Advanced catalyst design and reactor configuration upgrade in electrochemical carbon dioxide conversion[J]. Advanced Materials, 2023, 35(52): 2303052.
 [3] SULLIVAN I, GORYACHEV A, DIGDAYA I A, et al.Coupling electrochemical CO2 conversion with CO2 capture[J]. Nature Catalysis, 2021, 4(11): 952-958.
 [4] DAIYAN R, CHEN R, KUMAR P, et al.Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9307-9315.
 [5] LONG C, LI X, GUO J, et al.Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives[J]. Small Methods, 2019, 3(3): 1800369.
 [6] DING P, ZHAO H T, LI T S, et al.Metal-based electrocatalytic conversion of CO2 to formic acid/formate[J]. Journal of Materials Chemistry A, 2020, 8(42): 21947-21960.
 [7] HUANG J B, ZHANG X P, YANG J, et al.Recent progress on copper-based bimetallic heterojunction catalysts for CO2 electrocatalysis: unlocking the mystery of product selectivity[J]. Advanced Science, 2024, 11(24): 2309865.
 [8] VIJAYAKUMAR A, ZHAO Y, WANG K Z, et al.A nitrogen-doped porous carbon supported copper catalyst from a scalable one-step method for efficient carbon dioxide electroreduction[J]. ChemElectroChem, 2023, 10(2): e202200817.
 [9] LIU T F, SONG G H, LIU X J, et al.Insights into the mechanism in electrochemical CO2 reduction over single-atom copper alloy catalysts: a DFT study[J]. iScience, 2023, 26(10): 107953.
 [10] JIA Y F, LI F, FAN K, et al.Cu-based bimetallic electrocatalysts for CO2 reduction[J]. Advanced Powder Materials, 2022, 1(1): 100012.
 [11] LI S, GUAN A X, YANG C, et al.Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products[J]. ACS Materials Letters, 2021, 3(12): 1729-1737.
 [12] YE K, ZHOU Z W, SHAO J Q, et al.In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high- performance CO2 electroreduction[J]. Angewandte Chemie- International Edition, 2020, 59(12): 4814-4821.
 [13] XIONG W, YANG J, SHUAI L, et al.CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction[J]. ChemElectroChem, 2019, 6(24): 5951-5957.
 [14] TIAN D, WANG Z F, XU Z, et al.Elevating CO2 selective conversion: insights into copper-based single atom alloy catalysts[J]. Advanced Composites and Hybrid Materials, 2024, 8(1): 49.
 [15] PEDERSEN J K, BATCHELOR T A A, BAGGER A, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions[J]. ACS Catalysis, 2020, 10(3): 2169-2176.
 [16] 谈梦林, 黄千里, 刘咏. 添加磷酸对硫化铜微/纳米管形貌及电催化CO2还原性能的影响[J]. 粉末冶金材料科学与工程, 2025, 30(2): 148-156.
 TAN Menglin, HUANG Qianli, LIU Yong.Effects of adding phosphoric acid on the morphology and electrocatalytic CO2 reduction properties of copper sulfide micro/nano-tubes[J]. Materials Science and Engineering of Powder Metallurgy, 2025, 30(2): 148-156.
 [17] LI D, HUANG L L, TIAN Y, et al.Facile synthesis of porous Cu-Sn alloy electrode with prior selectivity of formate in a wide potential range for CO2 electrochemical reduction[J]. Applied Catalysis B: Environmental, 2021, 292: 120119.
 [18] XIONG R Z, XU H M, ZHU H R, et al.Recent progress in Cu-based electrocatalysts for CO2 reduction[J]. Chemical Engineering Journal, 2025, 505: 159210.
 [19] DUANMU J W, YANG X P, GAO F Y, et al.Progress of mechanistic pathways involved in electrochemical CO2 reduction[J]. Journal of Energy Chemistry, 2025, 102: 745-767.
 [20] MA Y Q, XU R, WU X, et al.Progress in catalysts for formic acid production by electrochemical reduction of carbon dioxide[J]. Topics in Current Chemistry, 2024, 383(1): 2.
 [21] LIU X H, JIA X L, ZHAO Y L, et al.Recent advances in nickel-based catalysts for electrochemical reduction of carbon dioxide[J]. Advanced Sensor and Energy Materials, 2023, 2(3): 100073.
 [22] WENG X F, CUI Y, SHAIKHUTDINOV S, et al.CO2 adsorption on CaO(001): temperature-programmed desorption and infrared study[J]. Journal of Physical Chemistry C, 2019, 123(3): 1880-1887.
 [23] SANTOS H L S, CORRADINI P G, MEDINA M, et al. Effect of copper addition on cobalt-molybdenum electrodeposited coatings for the hydrogen evolution reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33586-33597.
 [24] LI S J, CHEN W, DONG X, et al.Hierarchical micro/ nanostructured silver hollow fiber boosts electroreduction of carbon dioxide[J]. Nature Communications, 2022, 13(1): 3080.
 [25] PENG C, YANG S T, LUO G, et al.Surface Co-modification of halide anions and potassium cations promotes high-rate CO2-to-ethanol electrosynthesis[J]. Advanced Materials, 2022, 34(39): 2204476.
 [26] ANDRADE A B, FERREIRA N S, VALERIO M E G. Particle size effects on structural and optical properties of BaF2 nanoparticles[J]. RSC Advances, 2017, 7(43): 26839-26848.
 [27] ZHANG C M, LIN Z Y, JIAO L, et al.Metal-organic frameworks for electrocatalytic CO2 reduction: from catalytic site design to microenvironment modulation[J]. Angewandte Chemie-International Edition, 2024, 63(50): 202414506.
 [28] WU T Z, HAN M Y, XU Z J.Size effects of electrocatalysts: more than a variation of surface area[J]. ACS Nano, 2022, 16(6): 8531-8539.
 [29] LI R S, MAO H, ZHANG J J, et al.Rapid synthesis of porous Pd and PdNi catalysts using hydrogen bubble dynamic template and their enhanced catalytic performance for methanol electrooxidation[J]. Journal of Power Sources, 2013, 241: 660-667.
 [30] 贺凡, 伍人先, 程子业, 等. 电化学改性Ag纳米颗粒用于CO2 电催化还原[J]. 化学通报(中英文), 2025, 88(02): 219-226.
 HE Fan, WU Renxian, CHENG Ziye, et al.Electro- chemically modified Ag nanoparticles for CO2 electro- catalytic reduction[J]. Chemistry, 2025, 88(2): 219-226.
 [31] YAN Z H, SUN H M, CHEN X, et al.Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nature Communications, 2018, 9: 2373.
 [32] SHEN C Y, LI K, MA Y R, et al.Electrochemical reduction of CO2 via a CuO/SnO2 heterojunction catalyst[J]. Chemical Physics Letters, 2023, 818: 140438.
 [33] LIU M, PANG Y J, ZHANG B, et al.Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016, 537(7620): 382-386.
 [34] ZHANG B, XU P, QIU Y, et al.Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases[J]. Chemical Engineering Journal, 2015, 263: 1-8.
 [35] HAN K H, YU W S, XU L L, et al.Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst[J]. Fuel, 2021, 291: 120182.
 [36] VERMA S K, ABU SHAZ M, YADAV T P.Enhanced hydrogen absorption and desorption properties of MgH2 with graphene and vanadium disulfide[J]. International Journal of Hydrogen Energy, 2023, 48(56): 21383-21394.
 [37] ZHANG J H, LI Y B, WANG L, et al.Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313.
 [38] LIU C, CUNDARI T R, WILSON A K.CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: in comparison with homogeneous catalysis[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5681-5688.
 [39] CHEN X T, GRANDA-MARULANDA L P, MCCRUM I T, et al. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction[J]. Nature Communications, 2022, 13(1): 38.
 [40] JIN M T, ZHANG X, NIU S Z, et al.Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1 000 mA cm-2[J]. ACS Nano, 2022, 16(8): 11577-11597.
 [41] FAN Z Z, LUO R C, ZHANG Y X, et al.Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction[J]. Angewandte Chemie-International Edition, 2023, 62(7): e202216326.
 [42] ZHU S Q, JIANG B, CAI W B, et al.Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017, 139(44): 15664-15667.
 [43] WANG P, LI T, WU Q Q, et al.Molecular assembled electrocatalyst for highly selective CO2 fixation to C2+ products[J]. ACS Nano, 2022, 16(10): 17021-17032.
 [44] MEDFORD A J, MOSES P G, JACOBSEN K W, et al.A career in catalysis: Jens Kehlet Nørskov[J]. ACS Catalysis, 2022, 12(15): 9679-9689.
 [45] 杨乔彬, 曾凡浩, 黄睿, 等. ZrMnFe基吸气合金吸附二氧化碳气体的性能和机理[J]. 粉末冶金材料科学与工程, 2023, 28(6): 509-521.
 YANG Qiaobin, ZENG Fanhao, HUANG Rui, et al.Performance and mechanism of ZrMnFe based inspiratory alloy adsorbing CO2[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(6): 509-521.
 |  
											 
											 |  |  |