| 
					
						|  |  
    					|  |  
    					| High-temperature mechanical properties of in-situ nano-Al2O3 reinforced aluminum matrix composites prepared by powder hot extrusion |  
						| KUANG Shuqian1,2, ZHANG Liangxian1,2, ZHANG Tao1,2, JIANG Tengjiao1,2, ZHAO Ke3, LIU Jinling1,2 |  
						| 1. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 611756, China; 2. Sichuan Province Key Laboratory of Advanced Structural Materials Mechanical Behavior and Service Safety, Southwest Jiaotong University, Chengdu 611756, China;
 3. School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
 |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
														| 
													
													    | Abstract  The weight reduction design of supersonic aircraft urgently requires lightweight and high-strength Al matrix materials for service above 300 ℃. In this study, an in-situ nano-Al2O3 reinforced Al matrix composites were fabricated via powder hot extrusion, and their microstructure and high-temperature mechanical properties were investigated by X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, and tensile property test. The results show that in-situ generated nano-Al2O3 particles (approximately 115 nm) are uniformly dispersed within the Al matrix, which exhibits an average grain size of approximately 640 nm, and yielding a composite hardness (HV) of 148. After thermal exposure at 500 ℃ for 100 h, the composites maintain nearly unchanged hardness and average grain size. The composites achieves a room-temperature tensile strength of 482 MPa with an elongation of 5.9%, while maintaining a tensile strength of 240 MPa at 300 ℃. This enhancement is primarily attributed to the effective pinning of grain boundaries and hindrance of dislocation motion by the in-situ nanoparticles, maintaining the thermal stability of the structure, which significantly improves the high-temperature mechanical performance of the composites. |  
															| Received: 11 April 2025
																	    
															    															    															    																	Published: 13 October 2025 |  
															|  |  |  |  |  
													
																												  
															| [1] 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. DENG Yunlai, ZHANG Xinming.Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141.
 [2] 管仁国, 娄花芬, 黄晖, 等. 铝合金材料发展现状、趋势及展望[J]. 中国工程科学, 2020, 22(5): 68-75.
 GUAN Renguo, LOU Huafen, HUANG Hui, et al.Development of aluminum alloy materials: current status, trend, and prospects[J]. Strategic Study of CAE, 2020, 22(5): 68-75.
 [3] 陈汉, 伍鹏程, 张涛, 等. 耐热铝合金在航空领域中的研究进展与发展趋势[J]. 航空材料学报, 2024, 44(6): 1-15.
 CHEN Han, WU Pengcheng, ZHANG Tao, et al.Research progress and development trend of heat-resistant aluminum alloys in aerospace industry[J]. Journal of Aeronautical Materials, 2024, 44(6): 1-15.
 [4] 马力, 赵赫, 昝宇宁, 等. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(S1): 414-420.
 MA Li, ZHAO He, ZAN Yuning, et al.Preparation, application and strengthening mechanism of heat-resistant aluminum alloy[J]. Materials Reports, 2021, 35(S1): 414-420.
 [5] HU K Q, XU Q F, MA X, et al.A novel heat-resistant Al-Si-Cu-Ni-Mg base material synergistically strengthened by Ni-rich intermetallics and nano-AlNp microskeletons[J]. Journal of Materials Science & Technology, 2019, 35(3): 306-312.
 [6] LI J H, PENG Y, GUO X H, et al.On the microstructures and properties of a Zr-modified Al-Si-Cu-Mg alloy at intermediate temperature[J]. Journal of Alloys and Compounds, 2025, 1010: 178328.
 [7] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
 GAO Yihan, LIU Gang, SUN Jun.Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy[J]. Acta Metallurgica Sinica, 2021, 57(2): 129-149.
 [8] 张淑英, 姜波, 肖盼. 热暴露对不同时效处理的铝锂合金微观组织与性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(5): 473-480.
 ZHANG Shuying, JIANG Bo, XIAO Pan.Effects of thermal exposure on microstructure and properties of Al-Li alloy with different aging treatments[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 473-480.
 [9] PANDEY P, MAKINENI S K, GAULT B, et al.On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition[J]. Acta Materialia, 2019, 170: 205-217.
 [10] ERDENIZ D, NASIM W, MALIK J, et al.Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys[J]. Acta Materialia, 2017, 124: 501-512.
 [11] PLOTKOWSKI A, RIOS O, SRIDHARAN N, et al.Evaluation of an Al-Ce alloy for laser additive manufacturing[J]. Acta Materialia, 2017, 126: 507-519.
 [12] BOOTH-MORRISON C, DUNAND D C, SEIDMAN D N.Coarsening resistance at 400 ℃ of precipitation-strengthened Al-Zr-Sc-Er alloys[J]. Acta Materialia, 2011, 59(18): 7029-7042.
 [13] LU Q, WANG J C, LI H C, et al.Synergy of multiple precipitate/matrix interface structures for a heat resistant high-strength Al alloy[J]. Nature Communications, 2023, 14: 2959.
 [14] ZHOU W W, YAMAGUCHI T, KIKUCHI K, et al.Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Materialia, 2017, 125: 369-376.
 [15] ZHU L, LIU T S, DUAN T T, et al.Design of a new Al-Cu alloy manipulated by in-situ nanocrystals with superior high temperature tensile properties and its constitutive equation[J]. Materials & Design, 2019, 181: 107945.
 [16] ZAN Y N, ZHANG Q, ZHOU Y T, et al.Enhancing high-temperature strength of B4C-6061Al neutron absorber material by in-situ Mg(Al)B2[J]. Journal of Nuclear Materials, 2019, 526: 151788.
 [17] 马思源, 郭强, 张荻. 纳米Al2O3增强金属基复合材料的研究进展[J]. 中国材料进展, 2019, 38(6): 577-587.
 MA Siyuan, GUO Qiang, ZHANG Di.Research progress on nano-Al2O3 reinforced metal matrix composites[J]. Materials China, 2019, 38(6): 577-587.
 [18] REDDY M P, UBAID F, SHAKOOR R A, et al.Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process[J]. Materials Science and Engineering A, 2017, 696: 60-69.
 [19] 李玄, 赵科, 刘金铃. 20vol%体积分数纳米Al2O3颗粒增强铝基复合材料的高温压缩性能[J]. 复合材料学报, 2023, 40(2): 1118-1128.
 LI Xuan, ZHAO Ke, LIU Jinling.High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1118-1128.
 [20] 王浩伟. 原位自生陶瓷颗粒增强铝基复合材料制备及应用[J]. 航空制造技术, 2021, 64(16): 14-26.
 WANG Haowei.Preparation and application of in-situ ceramic particles reinforced Al matrix composites[J]. Aeronautical Manufacturing Technology, 2021, 64(16): 14-26.
 [21] 聂金凤, 伍玉立, 谢可伟, 等. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
 NIE Jinfeng, WU Yuli, XIE Kewei, et al.Microstructure and thermal stability of heterostructured Al-AlN nanocomposite[J]. Acta Metallurgica Sinica, 2022, 58(11): 1497-1508.
 [22] WANG J, LIU W, SHU G G, et al.Microstructure and elevated temperature mechanical properties of Al2O3/TiB2/Al composites[J]. Rare Metal Materials and Engineering, 2021, 50(3): 787-794.
 [23] BALOG M, HU T, KRIZIK P, et al.On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network[J]. Materials Science and Engineering A, 2015, 648: 61-71.
 [24] POLETTI C, BALOG M, SIMANCIK F, et al.High-temperature strength of compacted sub-micrometer aluminium powder[J]. Acta Materialia, 2010, 58(10): 3781-3789.
 [25] BALOG M, SIMANCIK F, BAJANA O, et al.ECAP vs. direct extrusion: techniques for consolidation of ultra-fine Al particles[J]. Materials Science and Engineering A, 2009, 504(1/2): 1-7.
 [26] IVANOV K V, OVCHARENKO V E.Structural features of ultrafine-grained aluminum processed through accumulative roll bonding providing improved mechanical properties and thermal stability[J]. Materials Science and Engineering A, 2020, 775: 138988.
 [27] 井萃汝, 张建涛, 温利平, 等. 粉末热挤压7075铝合金的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 140-150.
 JING Cuiru, ZHANG Jiantao, WEN Liping, et al.Microstructure and mechanical properties of powder hot extruded 7075 aluminium alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 140-150.
 [28] 游江, 刘允中, 顾才鑫, 等. 粉末热挤压SiCp/2024铝基复合材料的显微组织和力学性能[J]. 粉末冶金材料科学与工程, 2014, 19(1): 147-153.
 YOU Jiang, LIU Yunzhong, GU Caixin, et al.Microstructures and mechanical properties of SiCp/2024 aluminum matrix composite prepared by powder hot extrusion[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(1): 147-153.
 [29] 苏丽婷. 金属材料常用硬度检测方法[J]. 一重技术, 2024(3): 38-42.
 SU Liting.Common hardness measurement methods for metallic material[J]. CFHI Technology, 2024(3): 38-42.
 [30] JIMÉNEZ J A, PADILLA I, LÓPEZ-DELGADO A, et al. Characterization of the aluminas formed during the thermal decomposition of boehmite by the Rietveld refinement method[J]. International Journal of Applied Ceramic Technology, 2015, 12(S2): E178-E186.
 [31] 孙小曼, 李蔚, 刘会娇, 等. 不同氧化铝前驱体相转过程的研究[J]. 华东理工大学学报(自然科学版), 2021, 47(4): 420-426.
 SUN Xiaoman, LI Wei, LIU Huijiao, et al.Phase transition process of different Al2O3 precursors[J]. Journal of East China University of Science and Technology, 2021, 47(4): 420-426.
 [32] RONG X D, ZHAO D D, CHEN X F, et al.Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite[J]. Acta Materialia, 2023, 256: 119110.
 [33] ZHANG Z H, BAO H, XIANG K Y, et al.Examining the effect of second phase particles on recrystallization and grain refinement of Al-Zn-Mg-Cu alloy via coupling of over-aging and annealing treatments[J]. Materials Characterization, 2025, 222: 114846.
 [34] BALOG M, KRIZIK P, NOSKO M, et al.Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al2O3 skeleton[J]. Materials Science and Engineering A, 2014, 613: 82-90.
 |  
											 
											 |  |  |