|
|
Effects of adding phosphoric acid on the morphology and electrocatalytic CO2 reduction properties of copper sulfide micro/nano-tubes |
TAN Menglin, HUANG Qianli, LIU Yong |
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
|
|
Abstract The conversion of CO2 into chemicals with added value through electrocatalysis is an effective solution for reducing atmospheric CO2 concentration and alleviating the energy crisis. In this paper, the effects of adding phosphoric acid on the microscopic morphology and electrocatalytic CO2 reduction properties of CuS micro/nano-tubes were investigated by X-ray diffractometer, scanning electron microscope, transmission electron microscope, and electrochemical experiments. The results show that the addition of phosphoric acid leads to shorter lengths, smaller outer diameters, and thinner constituent unit nanosheets of micro/nano-tubes. The reduced micro/nano-tube size helps to expose more active sites, which improves the electrocatalytic CO2 reduction properties with a Faraday efficiency of the liquid-phase product formic acid up to 68% at -1.0 V. This work is expected to provide guidance for the design and preparation of catalysts for electrocatalytic CO2 reduction.
|
Received: 30 December 2024
Published: 15 April 2025
|
|
|
|
|
[1] SHAH S S A, JAVED M S, NAJAM T, et al. Metal oxides for the electrocatalytic reduction of carbon dioxide: mechanism of active sites, composites, interface and defect engineering strategies[J]. Coordination Chemistry Reviews, 2022, 471: 214716. [2] NIELSEN D U, HU X M, DAASBJERG K, et al.Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis, 2018, 1(4): 244-254. [3] LIU S S, WANG M F, CHENG Q Y, et al.Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules[J]. ACS Nano, 2022, 16(11): 17911-17930. [4] KONG Q Q, AN X G, LIU Q, et al.Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects[J]. Materials Horizons, 2023, 10(3): 698-721. [5] XIE H, WANG T Y, LIANG J S, et al.Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54. [6] BACK S, LIM J, KIM N Y, et al.Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements[J]. Chemical Science, 2017, 8(2): 1090-1096. [7] GATTRELL M, GUPTA N, CO A.A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper[J]. Journal of Electroanalytical Chemistry, 2006, 594(1): 1-19. [8] QIAO J L, LIU Y Y, HONG F, et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. [9] GUO C Y, SHI Y M, LU S Y, et al.Amorphous nanomaterials in electrocatalytic water splitting[J]. Chinese Journal of Catalysis, 2021, 42(8): 1287-1296. [10] KANG J X, YANG X Y, HU Q, et al.Recent progress of amorphous nanomaterials[J]. Chemical Reviews, 2023, 123(13): 8859-8941. [11] CHEN Y, LAI Z C, ZHANG X, et al.Phase engineering of nanomaterials[J]. Nature Reviews Chemistry, 2020, 4(5): 243-256. [12] TAN C L, ZHANG H.Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials[J]. Nature Communications, 2015, 6: 7873. [13] ZHANG H.Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. [14] CHEN Y, FAN Z X, ZHANG Z C, et al.Two-dimensional metal nanomaterials: synthesis, properties, and applications[J]. Chemical Reviews, 2018, 118(13): 6409-6455. [15] WANG L, WAN J W, WANG J Y, et al.Small structures bring big things: performance control of hollow multishelled structures[J]. Small Structures, 2021, 2(1): 2000041. [16] ZHANG J T, LI M, LIANG X, et al.Multishelled FeCo@FeCoP@C hollow spheres as highly efficienthydrogen evolution catalysts[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1267-1273. [17] LI H H, YU S H.Recent advances on controlled synthesis and engineering of hollow alloyed nanotubes for electrocatalysis[J]. Advanced Materials, 2019, 31(38): 1803503. [18] CHANDRASEKARAN S, YAO L, DENG L B, et al.Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chemical Society Reviews, 2019, 48(15): 4178-4280. [19] GARCÍA-MUELAS R, DATTILA F, SHINAGAWA T, et al. Origin of the selective electroreduction of carbon dioxide to formate by chalcogen modified copper[J]. Journal of Physical Chemistry Letters, 2018, 9(24): 7153-7159. [20] DUAN Y X, MENG F L, LIU K H, et al.Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies[J]. Advanced Materials, 2018, 30(14): 1706194. [21] 李丽, 石永霞, 侯曼, 等. 铜基材料电催化二氧化碳还原反应的研究进展[J]. 稀有金属, 2022, 46(6): 681-694. LI Li, SHI Yongxia, HOU Man, et al.Research progress of copper-based materials for electrocatalytic CO2 reduction reaction[J]. Chinese Journal of Rare Metals, 2022, 46(6): 681-694. [22] GHANBARI D, SALAVATI-NIASARI M, ESMAEILI- ZARE M, et al.Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3709-3713. [23] JUNG D, LEE S, KIM M S, et al.The effect of pH on crystal characteristics and IR absorbance of copper sulfide nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(10): 7169-7172. [24] ZHANG H J, ZHOU C, ZENG H X, et al.Novel sulfur vacancies featured MIL-88A(Fe)@CuS rods activated peroxymonosulfate for coumarin degradation: different reactive oxygen species generation routes under acidic and alkaline pH[J]. Process Safety and Environmental Protection, 2022, 166: 11-22. [25] ZHENG Y H, RONG J, ZHU Y, et al.Construction of highly dispersed active sites in MoS2/CuS/C electrocatalyst based on organic-inorganic hybrid nanoflower for efficient hydrogen generation[J]. Applied Surface Science, 2022, 574: 151725. [26] HUANG P F, YING H J, ZHANG S L, et al.In situ fabrication of MXene/CuS hybrids with interfacial covalent bonding via Lewis acidic etching route for efficient sodium storage[J]. Journal of Materials Chemistry A, 2022, 10(41): 22135-22144. [27] BARROCAS B T, AMBROŽOVÁ N, KOČÍ K. Photocatalytic reduction of carbon dioxide on TiO2 heterojunction photocatalysts: a review[J]. Materials, 2022, 15(3): 967. [28] NAVALÓN S, DHAKSHINAMOORTHY Á, ALVARO M, et al. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides[J]. Chemistry-Sustainability-Energy- Materials, 2013, 6(4): 562-577. [29] LOW J X, CHENG B, YU J G.Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686. [30] WANG L M, CHEN W L, ZHANG D D, et al.Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48(21): 5310-5349. [31] KUHL K P, CAVE E R, ABRAM D N, et al.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059. [32] NIE X W, ESOPI M R, JANIK M J, et al.Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie- International Edition, 2013, 52(9): 2459-2462. [33] GAO D F, ZHANG Y, ZHOU Z W, et al.Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655. [34] 王艳美. 铜基催化剂应用于电催化还原二氧化碳的研究[D]. 北京: 北京化工大学, 2022. WANG Yanmei.Study on electrocatalytic reduction of carbon dioxide with copper-based catalysts[D]. Beijing: Beijing University of Chemical Technology, 2022. [35] TAN M L, HUANG B, SU L N, et al.Amorphous nanomaterials: emerging catalysts for electrochemical carbon dioxide reduction[J]. Advanced Energy Materials, 2024, 14(40): 2402424. [36] 陈宇翔, 何捍卫. 两步水热法制备纳米花Ni3Fe/Ni3S高效电催化剂促进碱性电解水析氧反应[J]. 粉末冶金材料科学与工程, 2023, 28(5): 427-437. CHEN Yuxiang, HE Hanwei.Two-step hydrothermal preparing nanoflower-like Ni3Fe/Ni3S2 high-efficiency electrocatalysts to enhance oxygen evolution reaction in alkaline media[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 427-437. [37] 彭振新, 何捍卫. 无定形NiCoSe电极的碱性电解水析氢性能[J]. 粉末冶金材料科学与工程, 2023, 28(4): 379-389. PENG Zhenxin, HE Hanwei.Hydrogen evolution performance of amorphous NiCoSe electrode for alkaline electrolysis of water[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(4): 379-389. [38] HU F, YANG L, JIANG Y W, et al.Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface[J]. Angewandte Chemie-International Edition, 2021, 60(50): 26122-26127. |
|
|
|