[1] GRUBER N, GALLOWAY J N.An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451: 293-296.
[2] ROSCA V, DUCA M, DE GROOT M T, et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109(6): 2209-2244.
[3] FOSTER S L, PEREZ BAKOVIC S I, DUDA R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500.
[4] LI W, FANG W, WU C, et al.Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(7): 3658-3666.
[5] HE Y, TAN Q, LU L, et al.Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability[J]. Electrochemical Energy Reviews, 2019, 2: 231-251.
[6] CHEN J G, CROOKS R M, SEEFELDT L C, et al.Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360: 6391-6611.
[7] LI H, SHANG J, AI Z, et al.Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399.
[8] CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427: 523-527.
[9] ZHAO Z, PARK J, CHOI C, et al.Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reduction[J]. Innovation, 2022, 3(1): 100190.
[10] CAO N, CHEN Z, ZANG K T, et al.Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation[J]. Nature Communications, 2019, 10: 2877.
[11] HUSSAIN M, LU T, YE C, et al.Role of economic policies, renewable energy consumption, and natural resources to limit carbon emissions in top five polluted economies[J]. Resources Policy, 2023, 83: 103605.
[12] MUSHTAQ M A, ARIF M, YASIN G, et al.Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: activity, challenges, and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113197.
[13] ARIF M, BABAR M, AZHAR U, et al.Rational design and modulation strategies of Mo-based electrocatalysts and photo electrocatalysts towards nitrogen reduction to ammonia (NH3)[J]. Chemical Engineering Journal, 2023, 451: 138320.
[14] YANG L, WU T W, ZHANG R, et al.Insights into defective TiO2 in electrocatalytic N2 reduction: combining t-heoretical and experimental studies[J]. Nanoscale, 2019, 11: 1555-1562.
[15] LEE H K, KOH C S L, LEE Y H, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Science Advances, 2018, 4(3): eaar3208.
[16] ZHAO L, ZHOU J, ZHANG L, et al.Anchoring Au(111) on a bismuth sulfide nanorod: boosting the artificial electrocatalytic nitrogen reduction reaction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55838-55843.
[17] CHEN D E, LUO M, NING S, et al.Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction[J]. Nano Micro Small, 2022, 18: 2104043.
[18] DAS A, NAIR A S, MANDAL S C, et al.Current density calculations of an octahedral Fe nanocluster for selective electrocatalytic for nitrogen reduction[J]. ACS Applied Nano Materials, 2021, 4: 7758-7770.
[19] JIAO S, FU X, RUAN S, et al.Breaking the periodic arrangement of atoms for the enhanced electrochemical reduction of nitrogen and water oxidatio[J]. Science China Materials, 2022, 65(1): 147-154.
[20] WU T W, LI X Y, ZHU X J, et al.P-doped graphene toward enhanced electrocatalytic N2 reduction[J]. Chemical Communications, 2020, 56(12): 1831-1834.
[21] XIAO Y, SHEN C, LONG T, et al.Theoretical establishment and screening of an efficient catalyst for N2 electroreduction on two-dimensional transition-metal bborides (MBenes)[J]. Chemical Materials, 2021, 33(11): 4023-4034.
[22] SHEN Y, PAN T, WANG L, et al.Programmable logic in metal-organic frameworks for catalysis[J]. Advance Materials, 2021, 33(46): 2007442.
[23] ZHAI Z B, YAN W, DONG L, et al.Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms[J]. Journal of Materials Chemistry A, 2021, 9(36): 20320-20344.
[24] XIN Z F, WANG Y R, CHEN Y F, et al.Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction[J]. Nano Energy, 2019, 67: 104233.
[25] LV Y, WANG Y Q, YANG M, et al.Nitrogen reduction through confined electro-catalysis with carbon nanotube inserted metal-organic frameworks[J]. Journal of Materials Chemistry A, 2021, 9(3): 1480-1486.
[26] WEI Z, FENG Y, MA J, et al.Co-doped graphene edge for enhanced N2-to-NH3 conversion[J]. Journal of Energy Chemistry, 2020, 48(9): 322-327.
[27] LI Z N, LIU X M, JIN W, et al.Adsorption behavior of arsenicals on MIL-101(Fe): the role of arsenic chemical structures[J]. Journal of Colloid and Interface Science, 2019, 554: 692-704.
[28] JIN Y N, MI X C, QIAN J L, et al.Modular Construction of an MIL-101(Fe)@MIL-100(Fe) dual compartment nanoreactor and its boosted photocatalytic activity toward tetracycline[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48285-48295.
[29] SHI L, YIN Y, WANG S J, et al.Rigorous and reliable operations for electrocatalytic nitrogen reduction[J]. Applied Catalysis B: Environmental, 2020, 278: 119325.
[30] BAI Z Q, YUAN L Y, ZHU L, et al.Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption[J]. Journal of Materials Chemistry A, 2015, 3(2): 525-534.
[31] SUN X J, XI Q B, ZHAO Z X, et al.Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J]. Chemical Engineering Journal, 2014, 239: 226-232.
[32] LU C X, ZHOU Y Z, LI L Z, et al.Conversion of glucose into 5-hydroxymethylfurfural catalyzed by Cr-and Fe-containing mixed-metal metal-organic frameworks[J]. Fuel, 2023, 333: 126415.
[33] ZHAO T, ZHU H X, DONG M, et al.Low-temperature and additive-free synthesis of spherical MIL-101(Cr) with enhanced dye adsorption performance[J]. Inorganics, 2022, 10(3): 33.
[34] WAN Y C, ZHENG M Y, LV R T, et al.Rational design of Mo2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3[J]. Materials Today Energy, 2022, 32: 101240.
[35] JIANG Q S, HAN Z L, QU N, et al.Low-cost magnetic clay derivants from palygorskite/MIL-101(Fe) for high- performance adsorption-photocatalysis[J]. Applied Clay Science, 2022, 218: 106427.
[36] QIN M C, LIN X Y, GAN G Q, et al.Boosting electrocatalytic nitrogen fixation with Co-N3 site-decorated porous carbon[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(35): 13430-13439.
[37] MU J J, ZHAO Z W, GAO X W, et al.Bimetallic PdFe3 nano-alloy with tunable electron configuration for boosting electrochemical nitrogen fixation[J]. Advanced Energy Materials, 2024, 14: 2303558.
[38] TANG Z C, ZHOU X Q, DU M Y, et al. Crystal plane regulation promotes the oriented conversion of radicals in heterogeneous persulfate catalyzed oxidation process[J/OL]. Nano Micro Small,[2024-04-10]. https://doi.org/10.1002/smll.202312173.
[39] LUO L, ZHOU Y L, YAN W, et al.In-situ one-step synthesis of activated Carbon@MIL-101 (Cr) composites for hydrogen storage[J]. International Journal of Hydrogen Energy, 2022, 47(93): 39563-39571.
[40] DUAN M J, GUAN Z Y, MA Y W, et al.A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: synthesis, characterization, and catalytic performance[J]. Chemical Papers, 2018, 72(1): 235-250.
[41] ZHENG H N, SUN W J, CHEN Y, et al.Preparation and enhanced electrorheological properties of Ce-doped porous titanium oxide nanoparticles[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1642-1655.
[42] LI Q, ZHANG Y F, ZHANG M D, et al.Structural, electrical and magnetic properties of Gd-doped and (Al, Gd) codoped ZnO films[J]. Journal of Alloys and Compounds, 2023, 933: 167744.
[43] FU J W, WANG L, CHEN Y H, et al.Enhancement of aqueous stability of NH2-MIL-101(Fe) by hydrophobic grafting post-synthetic modification[J]. Environmental Science and Pollution Research, 2021, 28(48): 68560-68571.
[44] ZHANG J J, LIU R R, KUANG M, et al.Constructing CQDs/MIL-101(Fe)/g-C3N4 photocatalyst and its enhancement to the photocatalytic activity[J]. Materials Letters, 2023, 353: 135004.
[45] GUO H S, GUO W L, LIU Y, et al.Quinone-modified metal-organic frameworks MIL-101(Fe) as heterogeneous catalysts of persulfate activation for degradation of aqueous organic pollutants[J]. Water Science and Technology, 2019, 79(12): 2357-2365.
[46] TAKASHIMA T, FUKASAWA H, MOCHIDA T, et al.Cu-doped Fe2O3 nanorods for enhanced electrocatalytic nitrogen fixation to ammoni[J]. ACS Applied Nano Materials, 2023, 6(24): 23381-23389.
[47] LUO S J, LI X M, GAO W G, et al.An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes[J]. Sustainable Energy Fuels, 2020, 4(1): 164-170.
[48] QIN Q, ZHAO Y, SCHMALLEGGER M, et al.Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites[J]. Angewandte Chemie International Edition, 2019, 58(37): 13101-13106.
[49] DUAN J J, SUN Y T, CHEN S, et al.A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation[J]. Journal of Materials Chemistry A, 2020, 8(36): 18810-18815.
[50] SONG P F, KANG L, WANG H, et al.Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions[J]. ACS Applied Materials Interfaces, 2019, 11(13): 12408-12414.
[51] LIU P X, JING P Q, XU X, et al.Structural reconstruction of Ce-MOF with active sites for efficient electrocatalytic N2 reduction[J]. ACS Applied Engery Materials, 2021, 4(11): 12128-12136.
[52] HE H M, ZHU Q Q, YAN Y, et al.Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3[J]. Applied Catalysis B: Environmental, 2022, 302: 120840.
[53] YUAN S, FENG L, WANG K C, et al.Stable Metal-organic frameworks: design, synthesis, and applications[J]. Advance Materials, 2018, 30(37): 1704303.
[54] KHALI I E, XUE C, LIU W J, et al.The role of defects in metal-organic frameworks for nitrogen reduction reaction: when defects switch to features[J]. Advanced Functional Materials, 2021, 31(17): 2010052.
[55] ZHU C Y, WEN C X, WANG C, et al.Elongated heterometal double-sites promote nitrogen reduction on two-dimensional MM'B7 monolayers[J]. Journal of Materials Chemistry A, 2021, 9(17): 10855-10868.
[56] XIAO H, XIA M Y, CHONG B, et al.D-band center modulation of B-mediated FeS2 to activate molecular nitrogen for electrocatalytic ammonia synthesis[J]. Applied Catalysis B: Environmental, 2024, 343: 123474.