Effects of sintering temperature on microstructure and mechanical properties of Ti600 alloy fabricated by powder metallurgy
DING Chao1,2, ZOU Liming2, LIU Xin2, HANG Zhengxiang1, WU Wei1, LI Runxia1
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; 2. Guangdong Institution of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China
Abstract:Ti600 alloy (with a nominal composition of Ti-6Al-2.8Sn-4Zr-0.5Mo-0.4Si-0.1Y) was prepared by cold isostatic pressing and vacuum sintering using the mixed element powder method. The effects of sintering temperature on the microstructure, density and mechanical properties of the alloy were investigated. The results show that the microstructure of Ti600 alloy is composed of disordered α lamellar at the sintering temperature of 1 100 ℃, the α lamellar begins to arrange regularly to α colonies at the sintering temperature of 1 200 ℃, the α lamellar basically forms to α colonies at the sintering temperature of 1 300 ℃. The Zr and Mo elements dissolve in the β-Ti phase, the Al element dissolves in the α-Ti phase, and the Si element enriches in the precipitates, the Sn and Y elements distribute uniformly. With increasing the sintering temperature, the numbers of pores and α-Ti phase in the alloy gradually decrease, the amount of β-Ti phase gradually increases, and the density and the mechanical properties of the alloy increase. The alloy sintered at 1 300 ℃ has the relative density of 92.8%, the hardness (HV) of 324.0, the tensile strength of 622.6 MPa and elongation of 5.0%.
丁超, 邹黎明, 刘辛, 杭争翔, 吴伟, 李润霞. 烧结温度对粉末冶金Ti600合金组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(1): 8-14.
DING Chao, ZOU Liming, LIU Xin, HANG Zhengxiang, WU Wei, LI Runxia. Effects of sintering temperature on microstructure and mechanical properties of Ti600 alloy fabricated by powder metallurgy. Materials Science and Engineering of Powder Metallurgy, 2019, 24(1): 8-14.
[1] 侯金健, 高强强, 安晓婷, 等. 国内外高温钛合金研究及应用的最新发展[J]. 热加工工艺, 2014, 43(10): 11-14. HOU Jinjian, GAO Qiangqiang, AN Xiaoting, et al.Latest development of domestic and international research of high-temperature titanium alloy and its application[J]. Hot Working Technology, 2014, 43(10): 11-14. [2] GOGIA A K.High-temperature titanium alloys[J]. Defence Science Journal, 2005, 55(2): 149-173. [3] 张振祺, 罗国珍, 洪权, 等. Ti600合金的性能与显微组织的研究[J]. 航空材料学报, 1999, 19(4): 6-9. ZHANG Zhenqi, LUO Guozhen, HONG Quan, et al.Microstructures observation and mechanical properties test of near alpha titanium alloy Ti600[J]. Journal of Aeronautical Materials, 1999, 19(4): 6-9. [4] 高平, 赵永庆, 毛小南, 等. 钛合金铸锭偏析规律的研究进展[J]. 钛工业进展, 2009, 26(1): 1-5. GAO Ping, ZHAO Yongqing, MAO Xiaonan, et al.Study progress of segregation in titanium alloys[J]. Titanium Industry Progress, 2009, 26(1): 1-5. [5] FROES F H S, QIAN Ma. A Perspective on the Future of Titanium Powder Metallurgy[M]// FROES F H, QIAN Ma. Titanium Powder Metallurgy. UK: Butterworth-Heinemann, 2015: 601-608. [6] ABKOWITZ S, FISHER H.Titanium alloy components manufacture from blended elemental powder and the qualification process[M]// FROES F H, QIAN Ma. Titanium Powder Metallurgy. UK: Butterworth-Heinemann, 2015: 299-312. [7] ZHAO Z B, WANG Q J, HU Q M, et al.Effect of β (110) texture intensity on α-variant selection and microstructure morphology during β→α phase transformation in near α titanium alloy[J]. Acta Materialia, 2017, 126: 372-382. [8] LONARDELLI I, GEV N, WENK H R, et al.In situ observation of texture evolution during α→β and β→α phase transformations in titanium alloys investigated by neutron diffraction[J]. Acta Materialia, 2007, 55(17): 5718-5727. [9] 廉才浩, 杨胜, 周慧, 等. 合金元素Nb、Ta、Fe、Zr对钛合金组织和性能的影响[J]. 热加工工艺, 2013, 42(14): 40-42. LIAN Caihao, YANG Sheng, ZHOU Hui, et al.Effect of alloying element (Nb, Ta, Fe and Zr) on microstructure and mechanical properties of biomedical titanium alloy[J]. Hot Working Technology, 2013, 42(14): 40-42. [10] ZHOU Yu, LI Yuxuan, YANG Xianjin, et al.Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75-xNb25Zrx(x=0~6) alloys[J]. Journal of Alloys and Compounds, 2009, 486(1/2): 628-632. [11] 辛社伟, 洪权, 卢亚锋, 等. Ti600高温钛合金中析出物与蠕变性能的关系[J]. 中国有色金属学报, 2010, 20(11): 2143-2147. XIN Shewei, HONG Quan, LU Yafeng, et al.Relationship between precipitate and creep property of Ti600 high- temperature alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11): 2143-2147. [12] JAVANBAKT M, SALAHINEIAD E, HADIANFARD M J.The effect of sintering temperature on the structure and mechanical properties of medical-grade powder metallurgy stainless steels[J]. Powder Technology, 2016, 289: 37-43. [13] 王琪, 阳文豪, 许艳飞, 等. 烧结工艺对TA15粉末冶金钛合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2017, 22(3): 321-328. WANG Qi, YANG Wenhao, XU Yanfei, et al.Effect of sintering process on microstructure and properties of powder metallurgy TA15 titanium alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(3): 321-328. [14] YAN M, TANG H P, QIAN Ma.Scavenging of oxygen and chlorine from powder metallurgy[M]// FROES F H S, QIAN Ma. Titanium Powder Metallurgy. UK: Butterworth-Heinemann, 2015: 253-276.