Superplastic deformation behavior of hot isostatic pressed Ti-45Al-7Nb-0.3W hot-rolled alloy sheet
PENG Yuqin1, LI Yingxin2, LIANG Xiaopeng1, LI Huizhong1, CHE Yixuan1, GUO Xinming1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2. Zhuzhou Ruideer Metallurgy Equipment Manufacturing Co., Ltd., Zhuzhou 412000, China
Abstract:The hot isostatic pressed (HIP) Ti-45Al-7Nb-0.3W alloy sheet prepared by hot-rolled at 1 270 ℃, and the microstructure of the alloy sheet was investigated by scanning electron microscopy (SEM). High-temperature tensile experiments at 950 ℃ with an initial strain rate of 1×10-4 s-1 were performed. According to the tensile stress-strain curve and tensile properties, as well as the microstructure evolution and tensile fracture morphology after tensile fracture, the superplastic deformation (SPF) behavior of the alloy sheet with rolling deformation was studied. The results show that after rolling, the microstructure of as-HIPed alloy sheet changes from near-γ microstructure to duplex microstructure. And the average grain size of the sheet decreases and the elongation increases with the increase of rolling reductions. When the rolling reduction is 61%, the average grain size of the hot-rolled sheet is the smallest (9.8 μm), the elongation of the sheet is the largest (367.5%), and the tensile strength is 131 MPa. Continue to increase the rolling deformation, the grain size of the sheet grows, and the elongation decreases. During the SPF, the α2/γ lamellar colonies rotate and decompose, and a large number of dynamically recrystallized (DRX) grains are generated around them. The superplastic mechanism of the plates is grain boundary slip (GBS) and DRX.
[1] 唐见茂. 航空航天材料发展现状及前景[J]. 航天器环境工程, 2013, 30(2): 115-121. TANG Jianmao.A review of aerospace materials[J]. Spacecraft Environmental Engineering, 2013, 30(2): 115-121. [2] 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147. YANG Rui.Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2): 129-147. [3] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10. CAI Jianming, MI Guangbao, GAO Fan, et al.Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44(8): 1-10. [4] LIU B, LIU Y, LI Y P, et al.Thermomechanical characterization of β-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy[J]. Intermetallics, 2011, 19(8): 1184-1190. [5] 程军, 毛勇. Ti-25Al-14Nb-2Mo-1Fe合金高温力学性能研究[J]. 热加工工艺, 2012, 41(22): 9-12. CHENG Jun, MAO Yong.High temperature mechanical properties of Ti-25Al-14Nb-2Mo-1Fe alloy[J]. Material and Heat Treatment, 2012, 41(22): 9-12. [6] 蒋孟玲, 李慧中, 刘咏, 等. Nb含量对TiAl合金铸态组织的影响[J]. 粉末冶金材料科学与工程, 2014, 19(3): 367-372. JIANG Mengling, LI Huizhong, LIU Yong, et al.Effect of Nb content on microstructure of as-cast TiAl alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(3): 367-372. [7] CHENG J, DU Z X, ZHANG X Y, et al.Characterization of Ti-25.5Al-13.5Nb-2.8Mo-1.8Fe alloy hot deformation behavior through processing map[J]. Frontiers in Materials, 2020, 7: 23. [8] IMAYEV V M, GANEEV A A, IMAYEV R M, et al.Principles of achieving superior superplastic properties in intermetallic alloys based on γ-TiAl+α2-Ti3Al[J]. Intermetallics, 2018, 101: 81-86. [9] TANG B, ZHAO F T, CHU Y D, et al.Hot workability and superplasticity of low-Al and high-Nb containing TiAl alloys[J]. JOM, 2017, 69(12): 2610-2614. [10] GONG X B, DUAN Z X, PEI W, et al.Superplastic deformation mechanisms of superfine/nanocrystalline duplex PM-TiAl-based alloy[J]. Materials, 2017, 10(9): 1103. [11] IMAYEV V, GAISIN R, RUDSKOY A, et al.Extraordinary superplastic properties of hot worked Ti-45Al-8Nb-0.2C alloy[J]. Journal of Alloys and Compounds, 2016, 663(5): 217-224. [12] SUN F, LIN D L.Superplastic phenomenon in a large-grained TiAl alloy[J]. Scripta Materialia, 2001, 44(4): 665-670. [13] NIU Z H, KONG F T, CHEN Y Y, et al.Low-temperature superplasticity of forged Ti-43Al-4Nb-2Mo-0.5B alloy[J]. Journal of Alloys and Compounds, 2012, 543(5): 19-25. [14] SHEN Z Z, LIN J P, LIANG Y F, et al.A novel hot pack rolling of high Nb-TiAl sheet from cast ingot[J]. Intermetallics, 2015, 67: 19-25. [15] 魏忠伟, 李慧中, 梁霄鹏, 等. 轧制变形量对Ti-45Al-7Nb- 0.3W合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5): 690-695. WEI Zhongwei, LI Huizhong, LIANG Xiaopeng, et al.Effect of rolling deformation on microstructure and mechanical property of Ti-45Al-7Nb-0.3W alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(5): 690-695. [16] 张俊红. TiAl基合金的组织超塑性研究[D]. 长沙: 中南大学, 2003. ZHANG Junhong.Research on the superplasticity of TiAl-based alloy[D]. Changsha: Central South University, 2003. [17] VALIEV R Z, SONG C, MCFADDEN S X, et al.TEM/HREM observations of nanostructured superplastic Ni3AI[J]. Philosophical Magazine A, 2001, 81(1): 25-36. [18] KIM M S, HANADA S, WATANABE S, et al.Superplasticity in a recrystallized Ni3Al polycrystal doped with boron[J]. Materials Transactions, 2007, 30(1): 77-85. [19] 程军, 毛勇, 于振涛, 等. Ti-25Al-14Nb-2Mo-1Fe合金的热变形行为及本构方程的建立[J]. 金属热处理, 2015, 40(1): 146-151. CHENG JUN, MAO Yong, YU Zhentao, et al.Hot deformation behavior and establishment of constitutive equation of Ti-25Al- 14Nb-2Mo-1Fe alloy[J]. Heat Treatment of Metals, 2015, 40(1): 146-151. [20] RAJ R.Nucleation of cavities at second phase particles in grain boundaries[J]. Acta Metallurgica, 1978, 26(6): 995-1006. [21] UMAKOSHI Y, NAKANO T, YAMANE T.The effect of orientation and lamellar structure on the plastic behavior of TiAl crystals[J]. Materials Science and Engineering A, 1992, 152(1/2): 81-88.