Abstract:In this paper, SiC and ZrC powders were used as raw materials to prepare a water-based ceramic slurry with a volume fraction of 30% solid content. Slurry injection method and vacuum impregnation method were used to introduce slurry into the carbon fiber preform with a density of 0.2 g/cm3. Combined with chemical vapor infiltration and reactive melt infiltration, Cf/SiC-ZrC composites were prepared. The morphology and microstructure of the blank and Cf/SiC-ZrC composites were observed and analyzed. The density, porosity, bending strength and oxidation resistance of the composites were measured. The results show that, compared with the vacuum impregnation method, the SiC and ZrC powders can be uniformly introduced into the carbon fiber preform by slurry injection method, and the green body volume is filled by 37.3% at one time. The average density of the injected composites is 2.91 g/cm3, and the bending strength of the center and outer layer of the composites is 41.12 MPa and 43.90 MPa, respectively. The fracture modes of the composites are all pseudoplastic fracture. After oxidation in air for 120 min, a relatively continuous and dense oxide layer is formed on the surface of the injected composite. Oxidation tends to be balanced and stable, the samples show good antioxidant properties.
[1] 石林, 闫联生, 张强, 等. 碳纤维増强超高温陶瓷基复合材料的研究进展[J]. 炭素, 2021(1): 36-42, 30. SHI Lin, YAN Liansheng, ZHANG Qiang, et al.Research progress on carbon fiber reinforced ultrahigh temperature ceramic matrix composites[J]. Carbon, 2021(1): 36-42, 30. [2] 汤素芳, 胡成龙, 熊艳丽, 等. 超高温陶瓷改性碳基/陶瓷基复合材料的多尺度构筑与性能研究进展[J]. 装备环境工程, 2019, 16(10): 40-48. TANG Sufang, HU Chenglong, XIONG Yanli, et al.Research progress on multi-scale structure construction and properties of ultra-high temperature ceramic modified carbon-ceramic matrix composites[J]. Equipment Environmental Engineering, 2019, 16(10): 40-48. [3] HALD H.Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials[J]. Aerospace Science and Technology, 2003, 7(7): 551-559. [4] JAYASEELAN D D, DE Sá R G, BROWN P, et al. Reactive infiltration processing (RIP) of ultra high temperature ceramics (UHTC) into porous C/C composite tubes[J]. Journal of the European Ceramic Society, 2011, 31(3): 361-368. [5] WANG Y, ZHU X, ZHANG L, et al.Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2011, 37(4): 1277-1283. [6] 史琦, 李国栋, 王洋, 等. 料浆刷涂针刺法制备Cf/C-ZrB2复合材料及其力学性能[J]. 粉末冶金材料科学与工程, 2021, 26(3): 278-284. SHI Qi, LI Guodong, WANG Yang, et al.Preparation and mechanical property of Cf/C-ZrB2 composite material by slurry brushing and needle punching[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 278-284. [7] 李专, 肖鹏, 熊翔. 连续纤维增强陶瓷基复合材料的研究进展[J]. 粉末冶金材料科学与工程, 2007, 12(1): 13-19. LI Zhuan, XIAO Peng, XIONG Xiang.Progress in research work of continuous fiber reinforced ceramic matrix composite[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(1): 13-19. [8] LI Q, DONG S, WANG Z, et al.Fabrication of a ZrC-SiC matrix for ceramic matrix composites via in-situ reaction and its application[J]. Ceramics International, 2013, 39(1): 877-881. [9] 刘军, 熊翔, 王建营, 等. 耐超高温材料研究[J]. 宇航材料工艺, 2005(1): 6-9. LIU Jun, XIONG Xiang, WANG Jianying, et al.Research progress in materials for ultra high-temperature application[J]. Aerospace Materials & Technology, 2005(1): 6-9. [10] ZOU L, WALI N, YANG J M, et al.Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration[J]. Journal of the European Ceramic Society, 2010, 30(6): 1527-1535. [11] ZHAO D, ZHANG C, HU H, et al.Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch environment[J]. Composites Science and Technology, 2011, 71(11): 1392-1396. [12] WANG S, LI H, REN M, et al.Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame[J]. Ceramics International, 2017, 43(14): 10661-10667. [13] ZHAO L, JIA D, DUAN X, et al.Oxidation of ZrC-30vol% SiC composite in air from low to ultrahigh temperature[J]. Journal of the European Ceramic Society, 2012, 32(4): 947-954. [14] ZHOU Z, SUN Z, GE Y, et al.Microstructure and ablation performance of SiC-ZrC coated C/C composites prepared by reactive melt infiltration[J]. Ceramics International, 2018, 44(7): 8314-8321. [15] XIE J, LI K, LI H, et al.Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxyacetylene torch at 3 000 ℃[J]. Ceramics International, 2013, 39(4): 4171-4178. [16] 徐一溪, 易茂中, 王喜云, 等. 反应熔渗法制备C/C-SiC-ZrC复合材料的组织结构及力学性能[J]. 材料保护, 2019, 52(9): 88-94. XU Yixi, YI Maozhong, WANG Xiyun, et al.Microstructure and mechanical properties of C/C-SiC-ZrC composites prepared by reactive melt infiltration[J]. Materials Protection, 2019, 52(9): 88-94. [17] TANG S, DENG J, WANG S, et al.Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2-SiC composites[J]. Corrosion Science, 2009, 51(1): 54-61. [18] 肖鹏, 熊翔, 张红波, 等. C/C-SiC陶瓷制动材料的研究现状与应用[J]. 中国有色金属学报, 2005, 15(5): 667-674. XIAO Peng, XIONG Xiang, ZHANG Hongbo, et al.Progress and application of C/C-SiC ceramic braking materials[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 667-674. [19] TANG S, HU C.Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review[J]. Journal of Materials Science & Technology, 2017, 33(2): 117-130. [20] ARAI Y, INOUE R, GOTO K, et al.Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review[J]. Ceramics International, 2019, 45(12): 14481-14489. [21] 胡姣, 李国栋, 张洋, 等. 新型浆料注射法制备C/C复合材料的显微组织及力学性能[J]. 粉末冶金材料科学与工程, 2020, 25(2): 171-178. HU Jiao, LI Guodong, ZHANG Yang, et al.Microstructure and mechanical properties of C/C composites prepared by a novel slurry injection technique[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(2): 171-178. [22] ASTAPOV A N, ZHESTKOV B E, POGOZHEV Y S, et al.The oxidation resistance of the heterophase ZrSi2-MoSi2-ZrB2 powders-derived coatings[J]. Corrosion Science, 2021, 189: 109587.