Interface performance of Ni/Bi0.4Sb1.6Te3 thermoelectric material
KUANG Zhixiang1,2, MA Yan1,2, XU Chenhui1,2, KONG Dong1,2, FENG Bo1,2, FAN Xi'an1,2
1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; 2. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract:The barrier layer between the Bi0.4Sb1.6Te3 thermoelectric material and the metal electrode is the controlling factor for the stable service of the thermoelectric device. In this paper, the spark plasma sintering diffusion welding method was used to prepare a Ni layer on the Bi0.4Sb1.6Te3 surface as a barrier layer for the Ni/Bi0.4Sb1.6Te3 electrode joint, in which high-density Ni foil and Bi0.4Sb1.6Te3 alloy were used as the raw materials. The phase analysis of the barrier layer was performed using X-ray diffractometer. The interface morphology and element distribution of the electrode joints were analyzed by the scanning electron microscope and its energy spectrometer. The results show that the Ni foil annealed at 700 ℃ has excellent anti-diffusion effect, and the diffusion thickness is as low as 9 μm. The Ni foil annealed at 700 ℃ is combined with Bi0.4Sb1.6Te3 by diffusion welding to obtain a bonding strength of 13.19 MPa. As the annealing temperature of Ni foil increases, Ni/Bi0.4Sb1.6Te3 interface cracks are significantly improved. This is because the lattice mismatch between Ni/Bi0.4Sb1.6Te3 can be improved with the incresing annealing temperature of Ni foil, thereby the connection performance of the Ni layer and Bi0.4Sb1.6Te3 is improved.
[1] 陈立东, 刘睿恒, 等. 史迅. 热电材料与器件[M]. 北京: 科学出版社, 2018: 1-14. CHEN Lidong, LIU Ruiheng, SHI Xun, et al.Thermoelectric Materials and Devices[M]. Beijiang: Science Press, 2018: 1-14. [2] 张建中. 温差电技术[M]. 天津: 天津科学技术出版社, 2013: 131-135, 219-224. ZHANG Jianzhong.Thermoelectric Technology[M]. Tianjin: Tianjin Science and Technology Press, 2013: 131-135, 219-224. [3] WOOD C.Materials for thermoelectric energy conversion[J]. Reports on Progress in Physics, 1988, 51(4): 459-539. [4] BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461. [5] MENG F, CHEN L, SUN F.A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities[J]. Energy, 2011, 36(5): 3513-3522. [6] SNYDER G J, TOBERER E S.Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 101-110. [7] GERLACH E A.Method to determine the contact areas of clusters deposited on a semiconducting substrate[J]. Physica Status Solidi, 1999, 176(2): 937-942. [8] 周欢欢, 檀柏梅, 张建新, 等. Bi2Te3热电材料研究现状[J]. 半导体技术, 2011, 36(10): 765-770, 777. ZHOU Huanhuan, TAN Baimei, ZHANG Jianxin, et al.Research status of Bi2Te3 thermoelectric materials[J]. Semiconductor Technology, 2011, 36(10): 765-770, 777. [9] LIU W S, WANG H Z, WANG L J, et al.Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J]. Journal of Materials Chemistry A, 2013, 1(42): 13093-13100. [10] BOHRA A K, BHATT R, SINGH A, et al.Transition from n-to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: Material to device development[J]. Materials & Design, 2018, 159: 127-137. [11] TAKAHASHI M, KATOU Y, NAGATA K, et al.The composition and conductivity of electrodeposited Bi/Te alloy films[J]. Thin Solid Films, 1994, 240(1/2): 70-72. [12] TAKAHASHI M, MURAMATSU Y, SUZUKI T, et al.Preparation of Bi2Te3 films by electrode position from solution containing biethylenedia mine tetra acetic acid complex and TeO2[J]. Journal of the Electrochemical Society, 2003, 150(3): 169-174. [13] CHEN S W, YANG T R, WU C Y, et al.Interfacial reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 couples[J]. Journal of Alloys and Compounds, 2016, 686: 847-853. [14] LIN C F, HAU N Y, HUANG Y T, et al.Synergetic effect of Bi2Te3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi2Te3 joints[J]. Journal of Alloys and Compounds, 2017, 708: 220-230. [15] FENG S P, CHANG Y H, YANG J, et al.Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials[J]. Physical Chemistry Chemical Physics, 2013, 15(18): 6757-6762. [16] BOTTNER H, NURNUS J, GAVRIKOV A, et al.New thermoelectric components using microsystem technologies[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 414-420. [17] DICK B, BRETT M J, SMY T, et al.Periodic submicrometer structures by sputtering[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2001, 19(5): 1813-1819. [18] HE M, CHEN Z, QI G.Solid state interfacial reaction of Sn-37Pb and Sn-3.5Ag solders with Ni-P under bump metallization[J]. Acta Materialia, 2004, 52(7): 2047-2056. [19] ZHU X D, CAO L L, ZHU W, et al.Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance[J]. Advanced Materials Interfaces, 2018, 23(5): 1801279. [20] ZOU H L, ROWE D M, GAO M.Growth of p-and n-type bismuth telluride thin films by co-evaporation[J]. Journal of Crystal Growth, 2001, 222(1/2): 82-87. [21] LIN W P, WESOLOWSKI D E, LEE C C.Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(9): 1313-1320. [22] VENKATASUBRAMANIAN R, COLPITTS T, WATKO E, et al.MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications[J]. Journal of Crystal Growth, 1997, 170(1/4): 817-821. [23] KIM S, SOHN H S, SON I, et al.Influence of electroless Ni-P and Pd-P plating on the bonding strength of n-type Bi-Te thermoelements[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7603-7608. [24] CHIEN P Y, YEH C H, HSU H H, et al.Polarity Effect in a Sn3Ag0.5Cu/Bismuth telluride thermoelectric system[J]. Journal of Electronic Materials, 2014, 43(1): 284-289. [25] LIN W C, LI Y S, WU A T.Study of diffusion barrier for solder/n-type Bi2Te3 and bonding strength for p- and n-type thermoelectric modules[J]. Journal of Electronic Materials, 2018, 47(1): 148-154. [26] ZHAO D G, TIAN C W, TANG S Q, et al.Fabrication of a CoSb3-based thermoelectric module[J]. Materials Science in Semiconductor Processing, 2010, 13(3): 221-224. [27] TEWOLDE M, FU G, HWANG D J, et al.Thermoelectric device fabrication using thermal spray and laser micromachining[J]. Journal of Thermal Spray Technology, 2016, 25(3): 431-440. [28] JIANG C P, FAN X A, RONG Z Z, et al.Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes[J]. Journal of Electronic Materials, 2017, 46(2): 1363-1370. [29] XIA H, CHEN C L, DRYMIOTIS F, et al.Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication[J]. Journal of Electronic Materials, 2014, 43(11): 4064-4069. [30] XIA H, DRYMIOTIS F, CHEN C L, et al.Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications[J]. Journal of Materials Science, 2014, 49(4): 1716-1723. [31] JIN S, HUANG M, KWON Y, et al.Colossal grain growth yields single-crystal metal foils by contact-free annealing[J]. Science, 2018, 362(6418): 1021-1025. [32] 胡晓凯, 张双猛, 赵府, 等. 热电器件的界面和界面材料[J]. 无机材料学报, 2019, 34(3): 269-278. HU Xiaokai, ZHANG Shuangmeng, ZHAO Fu, et al.Thermoelectric device: contact interface and interface materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269-278. [33] ZHOU H Y, MU X, ZHAO W Y, et al.Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules[J]. Nano Energy, 2017, 40: 274-281.