Abstract:Tensile residual stresses caused in manufacturing processes are the main reason of decreasing in corrosion fatigue property of structures. Applying ultrasonic impact treatment is one of the promising and effective methods for enhancing corrosion fatigue properties of materials. In this work, effect of ultrasonic impact treatment on corrosion fatigue behavior of A106-B welded steel pipe, provided by a gas refinery, has been investigated. The results indicated that ultrasonic impact treatment modified the weld toe geometry obviously, weld toe angle is reduced by 50% and weld toe radius is increased by 15.5 times, the stress concentration decreases significantly. Meanwhile, the surface tensile residual stress releases effectively. And the compressive stress is introduced in the sub-surface region. In addition, grain refinement is observed in the surface region of the material. Hence, after ultrasonic impact treatment, both corrosion resistance and fatigue resistance of the specimens are improved, the corrosion fatigue life is increased by 99.4%.
[1] 吴梵, 滑林. 腐蚀、疲劳损伤下船体结构可靠性研究现状与展望[J]. 中国舰船研究, 2017, 12(5): 52-63. WU Fan, HUA Lin.Current status and prospects of reliability analysis of hull structures under corrosion and fatigue damage[J]. Chinese Journal of Ship Research, 2017, 12(5): 52-63. [2] 张春涛, 李正良, 王汝恒. 腐蚀和疲劳耦合作用下Q345角钢拟静力试验研究[J]. 上海交通大学学报, 2018, 52(2): 152-162. ZHANG Chuntao, LI Zhengliang, WANG Ruheng.Quasi-static test of Q345 equal angles under the coupling action of corrosion and fatigue vibration[J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 152-162. [3] ANDREIKIV O E, LYSYK A R, SHTAYURA N S.Evaluation of the residual service life of thin walled structural elements with short corrosion-fatigue cracks[J]. Materials Science, 2018, 53(4): 514-521. [4] HWANG J H, LEE J H, AHMAD H W.Assessing corrosion fatigue characteristics of dissimilar material weld between alloy 617 and 12Cr steel using buttering welding technique[J]. Metals, 2018, 8(10): 826. [5] 王智祥, 张瑶, 张吉祥. 2205DSS焊接接头腐蚀疲劳性能分析[J]. 焊接学报, 2014, 35(5): 67-70. WANG Zhixiang, ZHANG Yao, ZHANG Jixiang.Corrosion fatigue performance of 2205 DSS welded joints[J]. Transactions of the China Welding Institution, 2014, 35(5): 67-70. [6] 申艳丽, 孟庆森, 张丙静, 等.焊接工艺对 2205 双相不锈钢焊接接头综合性能的影响[J]. 焊接学报, 2007, 28(6): 47-52. SHEN Yanli, MENG Qingsen, ZHANG Bingjing, et al.Welding of 2205 duplex stainless steel welding joint properties[J]. Transactions of the China Welding Institution, 2007, 28(6): 47-52. [7] KHAN H L, ZHANG N Q, XU W Q, et al.Effect of maximum stress intensity factor, loading mode, and temperature on corrosion fatigue cracking behavior of Inconel 617 in supercritical water[J]. International Journal of Fatigue, 2019, 118: 22-34. [8] KANG D H, KIM S H, LEE C H, et al.Corrosion fatigue behaviors of HSB800 and its HAZs in air and seawater environments[J]. Materials Science and Engineering A, 2013, 559: 751-758. [9] ADEDIPE O, BRENNAN F, MEHMANPARAST A.Corrosion fatigue crack growth mechanism in offshore monopile steel weldments[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 11(40): 1868-1881. [10] 黄彪, 唐正平, 陈鑫, 等. 6061-T6 铝合金激光焊接接头腐蚀疲劳裂纹扩展[J]. 精密成形工程, 2017, 9(2): 27-33. HUANG Biao, TANG Zhengping, CHEN Xin, et al.Corrosion fatigue crack growth in laser welded 6061-T6 aluminum alloy[J]. Journal of Netshape Forming Engineering, 2017, 9(2): 27-33. [11] 季明国, 周昌玉. 大型储罐用12MnNiVR钢板焊接接头的腐蚀疲劳裂纹扩展试验研究[J]. 压力容器, 2008, 25(4): 1-4. JI Mingguo, ZHOU Changyu.Corrosion fatigue propagation experimental investigation for butt joint of 12MnNiVR steel used for large oil tank[J]. Pressure Vessel Technology, 2008, 25(4): 1-4. [12] LARROSA N O, AKID R, AINSWORTH RA.Corrosion-fatigue: a review of damage tolerance models[J]. International Materials Reviews, 2017, 63(5): 283-308. [13] SUN B, ZHANG Y, LI Z X.A multi-scale corrosion fatigue damage model of aluminum alloy considering multiple pits and cracks[J]. Acta Mechanica Solida Sinica, 2018, 31(6): 731-743. [14] DHAKAL B, SWAROOP S.Review: Laser shock peening as post welding treatment technique[J]. Journal of Manufacturing processes, 2018, 32: 721-733. [15] SCHAUMANN P, KEINDORF C.Experiments and simulations of post weld treatment with high frequency needle peening for welded joints[J]. Advanced Steel Construction, 2009, 5(3): 237-258. [16] YANG Y C, JIN X, LIU C M, et al.Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing[J]. Metals, 2018, 8(11): 934. [17] 刘肖, 王恒, 黄希, 等. 海洋工程装备材料腐蚀疲劳裂纹扩展研究综述[J]. 热加工工艺, 2017, 46(20): 32-37. LIU Xiao, WANG Heng, HUANG Xi, et al.Review on corrosion fatigue crack propagation of marine engineering equipment material[J]. Hot Working Technology, 2017, 46(20): 32-37. [18] 金辉, 何柏林. 超声冲击技术强化机理的研究[J]. 热加工工艺, 2018, 47(16): 18-26. JIN Hui, HE Bolin.Research on strengthening mechanism of ultrasonic impact technology[J]. Hot Working Technology. 2018, 47(16): 18-26. [19] 朱海洋, 张举, 蔡啸涛, 等. 超声冲击方式对焊接接头表面残余应力的影响[J]. 江苏科技大学学报(自然科学版), 2018, 32(3): 337-340. ZHU Haiyang, ZHANG Ju, CAI Xiaotao, et al.Effect of ultrasonic impact treatment manner on surface residual stress of welded joints[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(3): 337-340. [20] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(8): 2816-2821. JIA Cuiling, CHEN Furong.Effect of ultrasonic impact treatment on welding stress of aluminum alloy[J]. Materials Review, 2018, 32(8): 2816-2821.