Microstructure and mechanical properties of in-situ (Y2O3+TiB)/Ti-6Al-4V composites
HU Jun1, LIU Huiqun1, WANG Bin1, YI Danqing1,2, TIAN Yu1, WANG Nanhai1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2. Research Institute of Light Alloy, Central South University, Changsha 410083, China
Abstract:The rare earth compound YB4 was added into Ti-6Al-4V alloy fabricated using Ti and Al-40V alloy powders as raw materials to prepare in-situ (Y2O3+TiB)/Ti-6Al-4V composites by the high temperature thermal decomposition reaction of YB4 with titanium matrix. The effects of the amount of YB4 addition on the microstructure and mechanical properties of the composite were studied. The microstructures and phase compositions of the composites were analyzed by X-ray diffractometer (XRD), SEM and EPMA. The mechanical properties of materials were tested by electronic stretcher. The results show that the YB4 reacts with titanium matrix and in-situ generate Y2O3 particles and TiB whiskers. With increasing YB4 additive amount, Y2O3 particles gradually agglomerate and TiB whiskers grow. The minor content of YB4 in (Y2O3+TiB)/Ti-6Al-4V composites can slightly increase the tensile strength and significantly improve the elongation. In-situ synthesized (TiB+Y2O3)/Ti-6Al-4V composites achieved both high tensile strength (924.0 MPa) and high tensile ductility (9.13%) with adding mass fraction of 0.263% YB4 powder.
胡均, 刘会群, 王斌, 易丹青, 田宇, 王南海. 原位自生(Y2O3+TiB)/Ti-6Al-4V复合材料的组织与力学性能[J]. 粉末冶金材料科学与工程, 2018, 23(6): 632-639.
HU Jun, LIU Huiqun, WANG Bin, YI Danqing, TIAN Yu, WANG Nanhai. Microstructure and mechanical properties of in-situ (Y2O3+TiB)/Ti-6Al-4V composites. Materials Science and Engineering of Powder Metallurgy, 2018, 23(6): 632-639.
[1] 莱茵斯C, 皮特尔斯 M编. 钛与钛合金[M]. 北京: 化学工业出版社, 2005. LEYENS C, PETERS M.Titanium and Titanium Alloys[M]. Beijing: Chemical Industry Press, 2005. [2] VEIGA C, DAVIM J P, LOUREIRO A J R. Properties and applications of titanium alloys: a brief review[J]. Rev Adv Mater Sci, 2012, 32(2): 133-148. [3] PETERES M, KUMPFERT J, WARD C H, et al.Titanium alloys for aerospace applications[J]. Advanced Engineering Materials, 2010, 5(6): 419-427. [4] ABKOWITZ S, ABKOWITZ S M, FISHER H, et al.CermeTi® discontinuously reinforced Ti-matrix composites: manufacturing, properties, and applications[J]. JOM, 2004, 56(5): 37-41. [5] VADAYAR K S, RANI S D, PRASAD V V B. Microstructural and mechanical characteristics of in-situ titanium metal matrix composites[J]. International Journal on Theoretical & Applied Research in Mechanical Engineering, 2013, 2(4): 12-16. [6] 罗国珍. 钛基复合材料的研究与发展[J]. 稀有金属材料与工程, 1997, 26(2): 1-7. LUO Guozhen.Research and development of titanium matrix composites[J]. Rare Metal Materials and Engineering, 1997, 26(2): 1-7. [7] GORSSE S, MIRACLE D B.Mechanical properties of Ti- 6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Materialia, 2003, 51(9): 2427-2442. [8] ZHOU P, QIN J N, LU W J, et al.Microstructure and mechanical properties of in situ synthesised (TiC+TiB)/Ti-6Al-4V composites prepared by powder metallurgy[J]. Materials Science & Technology, 2011, 27(12): 1788-1792. [9] WANG S, LUO L M, ZHAO M L, et al.Microstructure and properties of TiN-reinforced W-Ti alloys prepared by spark plasma sintering[J]. Powder Technology, 2016, 294: 301-306. [10] 胡加瑞, 肖来荣, 龙毅, 等. 锻造对TiC颗粒增强钛基复合材料组织和性能的影响[J]. 粉末冶金材料科学与工程, 2012, 17(6): 735-741. HU J R, XIAO L R, LONG Y, et al.Effect of forging on the microstructure and properties of TiC particle reinforced titanium matrix composites[J]. Powder Metallurgy Materials Science and Engineering, 2012, 17(6): 735-741. [11] LI J, WANG L, QIN J, et al.Effect of TRIPLEX heat treatment on tensile properties of in situ synthesized (TiB+La2O3)/Ti composite[J]. Materials Science & Engineering A, 2010, 527(21): 5811-5817. [12] MADTHA S, LEE C, CHANDRAN K S R. Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic[J]. Powder Metallurgy Technology, 2007, 91(4): 1319-1321. [13] 徐栋. 原位合成多元增强钛复合材料(TiB+TiC+Y2O3)/Ti的微结构研究[D]. 上海: 上海交通大学, 2006. XU Dong.Microstructure of in-situ synthesized multiple reinforced titanium composites (TiB+TiC+Y2O3)/Ti[D]. Shanghai: Shanghai Jiaotong University, 2006. [14] HUANG L, QIAN M, LIU Z, et al.In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites[J]. Journal of Alloys & Compounds, 2018, 735: 2640-2645. [15] LIU Y, LIU Y B, WANG B, et al.Rare earth element: is it a necessity for PM Ti alloys[J]. Key Engineering Materials, 2012, 520: 41-48. [16] 吕维洁, 徐栋, 覃继宁, 等. 原位合成多元增强钛基复合材料(TiB+TiC+Y2O3)/Ti[J]. 中国有色金属学报, 2005, 15(11): 1727-1732. LÜ Weijie, XU Dong, QIN Jining, et al.In-situ synthesis of multiple reinforced titanium matrix composites (TiB+TiC+ Y2O3)/Ti[J]. Journal of the Chinese Society of Nonferrous Metals, 2005, 15(11): 1727-1732. [17] YAN M, LIU Y, SCHAFFER G B, et al.In situ synchrotron radiation to understand the pathways for the scavenging of oxygen in commercially pure Ti and Ti-6Al-4V by yttrium hydride[J]. Scripta Materialia, 2013, 68(1): 63-66. [18] QIU P, LI H, SUN X, et al.Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB+TiC+La2O3)/Ti6Al4V composites[J]. Journal of Alloys & Compounds, 2017, 699: 874-881. [19] YAN M, LIU Y, LIU Y B, et al.Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti-2.25Mo-1.5Fe alloy[J]. Scripta Materialia, 2012, 67(5): 491-494. [20] 王斌, 刘咏, 刘延斌, 等. 稀土La对粉末冶金钛合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2011, 16(1): 136-142. WANG Bin, LIU Yong, LIU Yanbin, et al.Effect of rare earth La on microstructure and mechanical properties of powder metallurgy titanium alloys[J]. Powder Metallurgy Materials Science & Engineering, 2011, 16(1): 136-142. [21] MA Z Y, TIONG S C, GEN L.In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process[J]. Scripta Materialia, 2000, 42(4): 367-373. [22] EYLON D, FROES F H.Titanium net-shape technologies[J]. JOM, 1984, 36(6): 36-41. [23] CONRAD H.Effect of interstitial solutes on the strength and ductility of titanium[J]. Progress in Materials Science, 1981, 26(2): 123-403. [24] FUJII H, FUJISAWA K, ISHII M, et al.Development of low-cost high-strength Ti-Fe-O-N alloy series[J]. Nippon Steel Technical Report, 2002, 85: 107-112. [25] WILLIAMS J C, SOMMER A W, TUNG P P.The influence of oxygen concentration on the internal stress and dislocation arrangements in a titanium[J]. Metallurgical Transactions, 1973, 4(4): 1188-1190. [26] YANG Y F, QIAN M.Fundamental understanding of the dissolution of oxide film on Ti powder and the unique scavenging feature by LaB6[J]. Metallurgical & Materials Transactions A, 2018, 49(1): 1-6. [27] ZAYKOSKI J A, OPEKA M M, SMITH L H, et al.Synthesis and characterization of YB4 ceramics[J]. Journal of the American Ceramic Society, 2011, 94(11): 4059-4065. [28] 陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及其预防[M]. 北京: 国防工业出版社, 2002: 4-6. TAO Chunhu, LIU Qingquan, CAO Chunxiao, et al.Failure and Prevention of Aeronautical Titanium Alloy[M]. Beijing: National Defense Industry Press, 2002: 4-6.