摘要文献中Al2O3-MgO二元体系的热力学参数在外推至多元系时与实验数据存在偏差,本工作基于热力学数据的严格评估,采用CALPHAD(calculation of phase diagram)方法对该体系进行热力学重新优化,并在此基础上进一步完善Al2O3-MgO-SiO2体系的热力学描述。优化过程中,采用离子双亚点阵模型描述液相,用CEF(compound energy formalism)化合物能量模型描述固相。所得Al2O3-MgO体系和Al2O3-MgO-SiO2体系的相图热力学计算结果与绝大部分实验数据相吻合,是构建Al2O3-SiO2-MgO-CaO-Fe2O3-Na2O六元体系热力学数据库的基础,并可为大宗铝硅酸盐固废材料化设计与高值化应用提供理论依据。
Abstract:Since the thermodynamic parameters of Al2O3-MgO binary system in the reported literatures deviated from the experimental data when it was extrapolated to the multivariate system, the calculation of phase diagram (CALPHAD) method was used in this work to re-optimize the system based on the rigorous evaluation of the thermodynamic data. Subsequently, the thermodynamic description of the Al2O3-MgO-SiO2 system was further improved. In the optimization process, the ionic two-sublattice model was used to describe the liquid phase and compound energy formalism (CEF) model was used to describe the solid phase. The results of thermodynamic optimization and calculation of Al2O3-MgO and Al2O3-MgO-SiO2 phase diagrams are in good agreement with most experimental data. This work is the basis of constructing a thermodynamic database of Al2O3-SiO2-MgO-CaO-Fe2O3-Na2O system, and can provide guidance for the high-value utilization of bulk aluminosilicate solid waste.
马天一, 刘钰玲, 高枫杨, 张亮, 杜勇. Al2O3-MgO和Al2O3-MgO-SiO2体系的热力学优化与计算[J]. 粉末冶金材料科学与工程, 2022, 27(4): 360-371.
MA Tianyi, LIU Yuling, GAO Fengyang, ZHANG Liang, DU Yong. Thermodynamic optimization and calculation of the Al2O3-MgO and Al2O3-MgO-SiO2 systems. Materials Science and Engineering of Powder Metallurgy, 2022, 27(4): 360-371.
[1] 刘本甫, 盖建功. 我国工业固废现状及综合利用建议[J]. 中国资源综合利用, 2018, 36(6): 92-93. LIU Benfu, GAI Jiangong.China’s industrial solid waste status and comprehensive utilization recommendations[J]. China Resources Comprehensive Utilization, 2018, 36(6): 92-93. [2] 晏全香. 尾矿再利用中铝硅酸盐矿物处理现状研究[J]. 中国矿业, 2011, 20(7): 59-61. YAN Quanxiang.Research on reclaiming tailings in the treatment of aluminumsilicat[J]. China Mining Magazine, 2011, 20(7): 59-61. [3] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46-52. JIA Min.The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 46-52. [4] KAUFMAN L, BEMSTEIN H.Computer Calculation of Phase Diagram[M]. New York: Academic Press, 1970. [5] ANDERSSON J O, HELANDER T, HÖGLUND L, et al. Thermo-Calc and DICTRA, computational tools for materials science[J]. Calphad, 2002, 26(2): 273-312. [6] 刘树红, 金波, 傅太白, 等. 相图热力学数据库及其计算软件:过去、现在和将来[J]. 中国科学:化学, 2019, 49(7): 966-977. LIU Shuhong, JIN Bo, FU Taibai, et al.Thermodynamic databases and software: past, present and future[J]. Science in China: Chemistry, 2019, 49(7): 966-977. [7] HALLSTEDL B.Assessment of the CaO-Al2O3 system[J]. Journal of the American Ceramic Society, 1990, 73(1): 15-23. [8] JUNG I H, DECTEROV S A, PELTON A D.Critical thermodynamic evaluation and optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 systems[J]. Journal of Phase Equilibria and Diffusion, 2004, 25(4): 329-345. [9] MAO H, SELLEBY M, SUNDMAN B.A re-evaluation of the liquid phases in the CaO-Al2O3 and MgO-Al2O3 systems[J]. Calphad, 2004, 28(3): 307-312. [10] ZIENERT T, FABRICHNAYA O.Thermodynamic assessment and experiments in the system MgO-Al2O3[J]. Calphad, 2013, 40: 1-9. [11] MAO H H, FABRICHNAYA A, SELLEBY M, et al.Thermodynamic assessment of the MgO-Al2O3-SiO2 system[J]. Journal of Materials Research, 2005, 20(4): 975-986. [12] RANKIN G, MERWIN H.The ternary system CaO-Al2O3-MgO[J]. Journal of the American Chemical Society, 1916, 38(3): 568-588. [13] ALPER A, MCNALLY R, RIBBE P, et al.The system MgO- MgAl2O4[J]. Journal of the American Ceramic Society, 1962, 45(6): 263-268. [14] VIECHNICKI D, SCHMID F, MCCAULEY J.Liquidus-solidus determinations in the system MgAl2O4-Al2O3[J]. Journal of the American Ceramic Society, 1974, 57(1): 47-48. [15] RANKIN G A, MERWIN H E.The ternary system MgO- Al2O3-SiO2[J]. American Journal of Science, 1918, 45(268): 301-325. [16] WARTENBERG H V, GURR W.Schmelzdiagramme höchstfeuerfester oxyde. III[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1931, 196(1): 374-383. [17] SHIRASUKA K, YAMAGUCHI G.Precise measurement of the crystal data and the solid solution range of the defective spinel, MgO· nAl2O3[J]. Journal of the Ceramic Society of Japan, 1974, 82: 650-653. [18] VIERTEL H, HU V.Thermal stability of defect spinels in the system MgAl2O4-Al2O3[J]. Neues Jahrbuch fur Mineralogie, Abhandlungen, 1980, 140: 89-101. [19] GREIG J W.Immiscibility in silicate melts: part I[J]. American Journal of Science, 1927, 5(73): 1-44. [20] FOSTER W.Synthetic sapphirine and its stability field in the system MgO-Al2O3-SiO2[J]. Journal of Smerican Ceramic Society, 1950, 33(3): 73-84. [21] KEITH M, SCHAIRER J.The stability field of sapphirine in the system MgO-Al2O3-SiO2[J]. The Journal of Geology, 1952, 60(2): 181-186. [22] SCHREYER W, SCHAIRER J F.Compositions and structural states of anhydrous Mg-Cordierites: a re-investigation of the central part of the system MgO-Al2O3-SiO2[J]. Journal of Petrology, 1961, 2(3): 324-406. [23] ARAMAKI S, ROY R.The Mullite-Corundum boundary in the systems MgO-Al2O3-SiO2 and CaO-Al2O3-SiO2[J]. Journal of the American Ceramic Society, 1959, 42(12): 644-645. [24] SCHLAUDT C M, ROY D M.Crystalline solution in the system MgO-MgSiO4-MgAl2O4[J]. Journal of the American Ceramic Society, 1965, 48(5): 248-251. [25] PELTON A D.A general “geometric” thermodynamic model for multicomponent solutions[J]. Calphad, 2001, 25(2): 319-328. [26] SMART R, GLASSER F.The subsolidus phase equilibria and melting temperatures of MgO-Al2O3-SiO2 compositions[J]. Ceramics International, 1981, 7(3): 90-97. [27] SAXENA S, CHATTERJEE N, FEI Y, et al.Thermodynamic data on oxides and silicates[J]. Crystal Research and Technology, 1995, 30(7): 83-84. [28] GOTTSCHALK M.Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-TiO2-Al2O3-Fe2O3- CaO-MgO-FeO-K2O-Na2O-H2O-CO2[J]. European Journal of Mineralogy, 1996, 175-223. [29] OSBORN E, MUAN A.Specific diagrams B. metal oxide systems[J]. Phase Diagrams for Ceramists, 1964, 1: 264-264. [30] SMART R, GLASSER F.Phase relations of cordierite and sapphirine in the system MgO-Al2O3-SiO2[J]. Journal of Materials Science, 1976, 11(8): 1459-1464. [31] HENDERSON D, TAYLOR J.Thermodynamic properties in the CaO-MgO-SiO2 and MgO-Al2O3-SiO2 systems[J]. Journal of Iron and Steel Institute, 1966, 204(1): 39-43. [32] REIN R H, CHIPMAN J.Activities in the liquid solution SiO2-CaO-MgO-Al2O3 at 1 600 ℃[J]. Transactions of the Metallurgical Society of AIME, 1965, 233(2): 415-425. [33] HILLERT M, JANSSON B, SUNDMAN B, et al.A two-sublattice model for molten solutions with different tendency for ionization[J]. Metallurgical Transactions A, 1985, 16(2): 261-266. [34] SUNDMAN B.Modification of the two-sublattice model for liquids[J]. Calphad, 1991, 15(2): 109-119. [35] PELTON A D, BLANDER M.Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach-application to silicate slags[J]. Metallurgical Transactions B, 1986, 17(4): 805-815. [36] GAYE H.Modeling of the thermodynamic properties of complex metallurgical slags[J]. Journal of Metals, Materials and Minerals, 1984, 36(8): 88-88. [37] LARRAIN J, KELLOGG H.Use of chemical species for correlation of solution properties[J]. Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, 1979: 130-144. [38] BJöRKMAN B. An assessment of the system FeO-SiO2 using a structure based model for the liquid silicate[J]. Calphad, 1985, 9(3): 271-282. [39] HASTIE J, HORTON W, PLANTE E, et al.Thermodynamic models of alkali-metal vapor transport in silicate systems[J]. High Temperatures High Pressures (Print), 1982, 14(6): 669-679. [40] HOCH M.Application of the Hoch-Arpshofen model to the SiO2-CaO-MgO-Al2O3 system[J]. Calphad, 1988, 12(1): 45-58. [41] BERMAN R G.A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 661-678. [42] MAO H, SELLEBY M, SUNDMAN B.Phase equilibria and thermodynamics in the Al2O3-SiO2 system-modeling of mullite and liquid[J]. Journal of the American Ceramic Society, 2005, 88(9): 2544-2551. [43] 毛利尚彦. MgO-Al2O3の固溶[J]. 窯業協會誌, 1982, 90(1045): 551-552. MORI T.Solubility of Al2O3 in MgO[J]. Journal of Kiln Industry Association, 1982, 90(1045): 551-552. [44] FUJII K, NAGASAKA T, HINO M.Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO-Al2O3[J]. ISIJ International, 2000, 40(11): 1059-1066. [45] HUANG W, HILLERT M, WANG X.Thermodynamic assessment of the CaO-MgO-SiO2 system[J]. Metallurgical and Materials Transactions A, 1995, 26(9): 2293-2310. [46] FABRICHNAYA O, E SILVA A C, ALDINGER F. Assessment of thermodynamic functions in the MgO-Al2O3-SiO2 system[J]. Zeitschrift fur Metallkunde, 2004, 95(9): 793-805.