Diffusion and atomic mobility of high temperature BCC phase in Ti-Al-Cr system
WU Chenjian1, BAI Weimin2, GAO Ning1, LIU Libin1, ZHANG Ligang1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Abstract:The diffusion study of titanium and its alloys can benefit to predict the phase constitution and microstructure evolution of titanium alloys during heat treatment. In this work, the diffusion behavior in BCC phase of Ti-Al-Cr ternary system was studied through diffusion couples method, a series of diffusion couples which was prepared and annealed separately at 1 373 K and 1 473 K for 8 h. The composition-distance profile measured via EPMA was fitted by ERFEX function. The inter-diffusion coefficients and impurity diffusion coefficients were extracted by Whittle-Green method and Hall method. It was found that the diffusion rate of Al in BCC phase of Ti-Al-Cr system is much faster than Cr. Meanwhile main diffusion coefficients and impurity diffusion coefficients of Al increase as the concentration of Al and Cr increase, which is contrary for Cr. The diffusion coefficients measured in experiments were used to assess the atomic mobility and develop the atomic mobility database of the BCC phase in the Ti-Al-Cr system. The comparison between the simulated results (including composition-distance profiles, diffusion paths and main diffusion coefficients) and the experimental data showed a good consistency, which verify the accuracy of the database.
吴晨剑, 白伟民, 高宁, 刘立斌, 章立钢. Ti-Al-Cr体系高温BCC相扩散及原子移动性[J]. 粉末冶金材料科学与工程, 2021, 26(3): 189-201.
WU Chenjian, BAI Weimin, GAO Ning, LIU Libin, ZHANG Ligang. Diffusion and atomic mobility of high temperature BCC phase in Ti-Al-Cr system. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 189-201.
[1] WU D, LIU L, ZHANG L, et al.Tensile deformation mechanism and micro-void nucleation of Ti-55531 alloy with bimodal microstructure[J]. Journal of Materials Research and Technology, 2020, 9(6): 15442-15453. [2] 张美娟, 南海, 鞠忠强, 等. 航空铸造钛合金及其成型技术发展[J]. 航空材料学报, 2016, 36(3): 13-19. ZHANG Meijuan, NAN Hai, JU Zhongqiang, et al.Developments of aviation cast titanium alloys and forming technology[J]. Journal of Aeronautical Materials, 2016, 36(3): 13-19. [3] 何丹琪, 石颢. 钛合金在航空航天领域中的应用探讨[J]. 中国高新技术企业, 2016, 27: 50-51. HE Danqi, SHI Hao.Discussion of applying titanium alloys in aviation and aerospace field[J]. Chinese High-tech Enterprise, 2016, 27: 50-51. [4] NIINOMI M.Recent metallic materials for biomedical applications[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 477-483. [5] 王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010, 20(S1): 958-963. WANG Dingchun.Development and application of high- strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963. [6] HELANDER T, AGREN J.Diffusion in the B2-B.C.C. phase of the Al-Fe-Ni system—application of a phenomenological model[J]. Acta Materialia, 1999, 47(11): 3291-3300. [7] CHEN Q, MA N, WU K S, et al.Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-Al-V[J]. Scripta Materialia, 2004, 50: 471-476. [8] MAO C, TAN M Y, ZHANG L G, et al.Experimental reinvestigation and thermodynamic description of Bi-Te binary system[J]. Calphad, 2018, 60: 81-89. [9] ZHANG L J, STRATMANN M, DU Y, et al.Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation[J]. Acta Materialia, 2015, 88: 156-169. [10] CHEN F W, XU G L, ZHANG X Y, et al.Exploring the phase transformation in β-Quenched Ti-55531 alloy during continuous heating via dilatometric measurement, microstructure characterization, and diffusion analysis[J]. Metallurgical and Materials Transactions A, 2016, 47: 5383-5394. [11] WU D, LIU L B, ZENG L J, et al.Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation[J]. Journal of Materials Science & Technology, 2021, 74: 78-88. [12] LUKAS H, FRIES S, BO S.Computational thermodynamics: The CALPHAD Method[M]. UK: Cambridge University Press, 2007: 1-5. [13] SAUNDERS N, MIODOWNIK A.CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide[M]. UK: Elsevier Science Ltd., 1998: 1-20. [14] ANDERSSON J O, AGREN J.Models for numerical treatment of multicomponent diffusion in simple phases[J]. Journal of Applied Physics, 1992, 72(4):1350-1355. [15] LIU Y J, GE Y, YU D, et al.Assessment of the diffusional mobilities in BCC Ti-V alloys[J]. Journal of Alloys and Compounds, 2009, 470(1): 176-182. [16] HUANG L, CUI Y W, CHANG H, ZHONG H, et al.Assessment of atomic mobilities for BCC phase of Ti-Al-V system[J]. Journal of Phase Equilibria and Diffusion, 2010, 31(2):135-143. [17] LI W B, TANG B, CUI Y W, et al.Assessment of diffusion mobility for the BCC phase of the Ti-Al-Cr system[J]. Calphad, 2011, 35(3): 384-390. [18] BAI W M, XU G L, TAN M Y, et al.Diffusivities and atomic mobilities in BCC Ti-Mo-Zr Alloys[J]. Materials, 2018, 11(10): 1909-1926. [19] BAI W M, XU G L, YANG Z J, et al.Diffusivities and atomic mobilities in BCC Ti-Nb-Ta alloys[J]. Calphad, 2019, 65: 299-315. [20] BAI W M, TIAN Y Y, XU G L, et al.Diffusivities and atomic mobilities in BCC Ti-Zr-Nb alloys[J]. Calphad, 2019, 64: 160-174. [21] CHEN Y, TANG B, XU G L, et al.Diffusion research in BCC Ti-Al-Mo ternary alloys[J]. Metallurgical and Materials Transactions A, 2014, 45(4): 1647-1652. [22] GU Y Y, FAN F J, GUO Y H, et al.Diffusion and atomic mobility of BCC Ti-Al-Nb alloys: Experimental determination and computational modeling[J]. Calphad, 2018, 62: 83-91. [23] FAN F J, GU Y Y, XU G L, et al.Diffusion research in BCC Ti-Al-Zr ternary alloys[J]. Journal of Phase Equilibria and Diffusion, 2019, 40(5): 686-696. [24] TAKAHASHI T, MATSUDA N, KUBO S, et al.Inter-diffusion in the β solid solution of Ti-Al-Cr system[J]. Journal of Japan Institution of Light Metals, 2004, 54(7): 280-286. [25] 陈逸. Ti-Al-Mo-V-Cr-Fe系钛合金中扩散及β→α相变的动力学研究[D]. 西安: 西北工业大学, 2015: 71-73. CHEN Yi.Kinetic study of the diffusion and β→α phase transformation in Ti-Al-Mo-V-Cr-Fe titanium alloy[D]. Xi’an: Xi’an Northwestern Polytechnical University, 2015: 71-73. [26] 白伟民. Ti合金原子移动性数据库的建立及其在β/α相变中的应用[D]. 长沙: 中南大学, 2019: 58-59. BAI Weimin.Foundation of Ti alloys atomic mobility database and application in β/α phase transformation[D]. Changsha: Central South University, 2019: 58-59. [27] KIRKALDY J.Diffusion in multicomponent metallic system[J]. Canadian Journal of Physics, 1957, 35: 435-440. [28] WHITTLE D, GREEN A.The measurement of diffusion coefficients in ternary systems[J]. Scripta Metallurg, 1974, 8: 883-884. [29] HALL L.An analytical method of calculating variable diffusion coefficients[J]. The Journal of Chemical Physics, 1953, 21: 87-89. [30] JÖNSSON B. Assessment of the mobility of carbon in fcc C-Cr-Fe-Ni alloys[J]. Zeitschrift fuer Metallkunde, 1994, 85: 502-509. [31] WANG C, XU G, CUI Y.Mapping of diffusion and nano-hardness properties of FCC Co-Al-V alloys using ternary diffusion couples[J]. Metallurgical and Materials Transactions A, 2017, 48: 4286-4296. [32] KIRKALDY J, WEICHERT D, HAQ Z.Diffusion in multicomponent metallic systems: Vi. some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations[J]. Canadian Journal of Physics, 1963, 41: 2166-2173. [33] WITUSIEWICZ V T, BONDAR A A, HECHT U, et al.The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti[J]. Journal of Alloys and Compounds, 2008, 465(1): 64-77. [34] GHOSH G.Thermodynamic and kinetic modeling of the Cr-Ti-V system[J]. Journal of Phase Equilibria and Diffusion, 2002, 23(4): 310-328. [35] LIANG Y, GUO C P, LI C R, et al.A thermodynamic description of the Al-Cr-Si system[J]. Journal of Phase Equilibria and Diffusion, 2009, 30(5): 462-479.