摘要针对干法造粒制备Si3N4颗粒过程,基于流体体积函数(volume of fluid,VOF)方法,采用湍流模型中可实现的k-ε模型(k为湍流动能,ε为耗散率),模拟计算喷嘴入口的倾斜角度α对空气芯、雾化锥角和喷嘴出口处黏结液速度的影响,并采用干法造粒制备Si3N4陶瓷颗粒进行实验验证。计算结果表明:随倾斜角度α从0°增大到30°,喷嘴内空气芯区域面积由约占总面积的18%增大到25%,空气芯的平均直径增大,同时喷嘴出口处的黏结液速度梯度由4.43~5.06 m/s增大到5.69~6.32 m/s,雾化锥角由63°增大到74°,从而加快黏结液膜的破碎过程;而当倾斜角度增大到45°时,空气芯的平均直径、喷嘴出口处黏结液的速度和雾化锥角都最小。实验结果表明,雾化喷嘴的入口倾斜角度为30°时,Si3N4颗粒粒度最细。数值分析结果与实验结果吻合良好。
Abstract:In the process of preparing Si3N4 particles by dry granulation, volume of fluid (VOF) method and realizable k-ε model (k is turbulent kinetic energy, ε is dissipation rate) in turbulence model were used to simulate and calculate the influence of the deflection angle α of the nozzle inlets on air core, atomization cone angle and adhesive velocity at nozzle outlet. The experimental verification of Si3N4 ceramic particles prepared by dry granulation was carried out. The results show that when the deflection angle α increases from 0° to 30°, the area of air core in nozzle increases from about 18% to 25%. The mean diameter of air core increases, and the velocity gradient of binder at nozzle outlet increases from 4.43-5.06 m/s to 5.69-6.32 m/s. The spray cone angle increases from 63° to 74° and then the breakup process of the liquid film can be accelerated. When the deflection angle increases to 45°, the average diameter of the air core, the velocity of adhesive at the nozzle outlet and the atomization cone angle are the minimum. The experimental results show that the particle size of Si3N4 is the smallest when the deflection angle of atomizer is 30°. The numerical results are in good agreement with the experimental results.
[1] 李雪松, 江中浩, 连建设, 等. 分散方式对Ni-Si3N4纳米复合电镀层显微组织和性能的影响[J]. 吉林大学学报(工学版), 2007, 37(6): 1317-1322. LI Xuesong, JIANG Zhonghao, LIAN Jianshe, et al. Effect of dispersion mode on microstructure and properties of Ni-Si3N4 nano composite electrodeposited coating[J]. Journal of Jilin University (Engineering Edition), 2007, 37(6): 1317-1322. [2] 余冬玲, 花拥斌, 吴南星, 等. 陶瓷墙地砖干法造粒过程坯料粉体成形与造粒室转速的影响[J]. 硅酸盐通报, 2017, 36(10): 3353-3360. YU Dongling, HUA Yongbin, WU Nanxing, et al. Influence of billet powder formation and rotating speed of granulation chamber on ceramic tile dry granulation process[J]. Silicate Bulletin, 2017, 36(10): 3353-3360. [3] RATTES A L R, OLIVEIRA W P. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles[J]. Powder Technology, 2007, 171(1): 7-14. [4] SHU Z, ZHOU J, WAING Y X.A novel approach of preparing press-powders for cleaner production of ceramic tiles[J]. Journal of Cleaner Production, 18(10/11): 1045-1051. [5] 廖达海, 宁翔, 吴南星, 等. 陶瓷墙地砖干法制粉坯料颗粒与主轴转速分析[J]. 陶瓷学报, 2018, 39(2): 207-212. LIAO Dahai, NING Xiang, WU Nanxing, et al. Analysis of billet particles and spindle speed in dry milling of ceramic tiles[J]. Acta Ceramics Sinica, 2018, 39(2): 207-212. [6] 张楠, 郑伍魁, 丁松雄, 等. 悬浮态干法造粒工艺制备陶瓷墙地砖坯体粉料的工艺参数研究[J]. 硅酸盐通报, 2018, 37(3): 831-836. ZHANG Nan, ZHENG Wukui, DING Songxiong, et al. Study on process parameters of ceramic tile body powder prepared by suspension dry granulation process[J]. Silicate Bulletin, 2018, 37(3): 831-836. [7] 潘华辰, 周泽磊, 刘雷. 关键结构参数对离心式雾化喷嘴雾化效果的影响研究[J]. 机械工程学报, 2017, 53(2): 199-206. PAN Huachen, ZHOU Zelei, LIU Lei. Influence of key structural parameters on atomization effect of centrifugal atomizer[J]. Journal of Mechanical Engineering, 2017, 53(2): 199-206. [8] BELHADEF A, VALLET A, AMIELH M, et al.Pressure-swirl atomization: Modeling and experimental approaches[J]. International Journal of Multi-Phase Flow, 2012, 39(9): 13-20. [9] JIA M, XIE M, LIU H, et al.Numerical simulation of cavitation in the conical-spray nozzle for diesel premixed charge compression ignition engines[J]. Fuel, 2011, 90(8): 2652-2661. [10] AMINI G.Liquid flow in a simple swirl nozzle[J]. International Journal of Multiphase Flow, 2015, 79: 225-235. [11] 刘国库, 潘刚, 郑洪涛. 结构参数对喷嘴性能影响的数值研究[J]. 航空发动机, 2015, 41(5): 28-32. LIU Guoku, PAN Gang, ZHENG Hongtao. Numerical study on the influence of structural parameters on nozzle performance[J]. Aeroengine, 2015, 41(5): 28-32. [12] 陈晨, 杨样, 高宏力, 等. 敞口式离心喷嘴内部及近喷口区域的流动特性[J]. 航空动力学报, 2016(12): 2988-2995. CHEN Chen, YANG Yang, GAO Hongli, et al. Flow characteristics in the internal and near nozzle region of an open centrifugal nozzle[J]. Journal of Aeronautical Dynamics, 2016(12): 2988-2995. [13] HIRT C W, NICHOLS B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. [14] LAN Z K, ZHU D H, TIAN W X, et al.Numerical approaches and analysis of spray characteristics for pressuriser nozzles[J]. The Canadian Journal of Chemical Engineering, 2014, 92(5): 953-963. [15] 尹俊连, 焦磊, 仇性启, 等. 旋流喷嘴内部流场的数值模拟和实验研究[J]. 浙江大学学报(工学版), 2009, 43(5): 968-972. YIN Junlian, JIAO Lei, QIU Xingqi, et al. Numerical simulation and experimental study on internal flow field of swirl nozzle[J]. Journal of Zhejiang University (Engineering Edition), 2009, 43(5): 968-972. [16] TAO Q, XIN S, YAN L, et al.Effect of back pressure on nozzle inner flow in fuel injector[J]. Fuel, 2016, 173: 79-89.