Research status on the corrosion resistance of rare earth hafnates used in thermal/environmental barrier coatings
YU Xiaofeng1,2, SHI Pingping1, ZHAO Danyang1, WU Xiaozan1,2
1. Central South University Science-Tech Park Development Co., Ltd, Changsha 410083, China; 2. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Abstract:Rare earth hafnates exhibit low thermal conductivity, high melting point, excellent high-temperature phase stability, and robust environmental corrosion resistance, offering promising applications in thermal/environmental barrier coatings for new-generation aero-engine hot-end parts. This paper focuses on the elaboration of rare earth hafnate materials as environmental barrier coatings, summarises the research progress in water vapor, molten CaO-MgO-Al2O3-SiO2, molten salt, and coupled environment of water vapor and molten CaO-MgO-Al2O3-SiO2 corrosion resistance, and outlines its future development direction.
喻晓峰, 史平平, 赵丹阳, 伍晓赞. 热/环境障涂层用稀土铪酸盐的抗腐蚀性能研究现状[J]. 粉末冶金材料科学与工程, 2025, 30(4): 261-271.
YU Xiaofeng, SHI Pingping, ZHAO Danyang, WU Xiaozan. Research status on the corrosion resistance of rare earth hafnates used in thermal/environmental barrier coatings. Materials Science and Engineering of Powder Metallurgy, 2025, 30(4): 261-271.
[1] KODAMA H, MIYOSHI T.Fabrication and fracture behavior of novel SiC ceramics having rodlike grains[J]. Journal of the American Ceramic Society, 1992, 75(6): 1558-1561. [2] PADTURE N P.In situ‐toughened silicon carbide[J]. Journal of the American Ceramic Society, 1994, 77(2): 519-523. [3] HOLMQUIST M, SUDRE O, LUNDBERG R, et al. Development of ultra high temperature ceramic composites for gas turbine combustors[C]// Proceedings of the ASME1997 International Gas Turbine and Aeroengine Congress and Exhibition: Volume 4. New York: ASME, 1997, 97-GT- 413. [4] 刘文川, 邓景屹, 魏永良. 碳纤维增强C-SiC梯度基复合材料研究[J]. 高技术通讯, 1997, 7(4): 1-6. LIU Wenchuan, DENG Jingyi, WEI Yongliang.The studies of C/C-SiC gradient matrix composites[J]. High Technology Letters, 1997, 7(4): 1-6. [5] VERRILLI M J, CALOMINO A M, BREWER D N.Creep-rupture behavior of a nicalon/SiC composite[C]// JENJINS M G, LARA-CURZIO E, GONCZY S T, et al. Thermal and Mechanical Test Methods and Behavior of Continuous-Fiber Ceramic Composites. West Conshohocken, Pennsylvania, USA: American Society for Testing and Materials, 1997: 158-175. [6] ZHAO X, ZHAO L, LOUIS B.Analysis on service life of hot-end components of gas turbine using equivalent operation[J]. International Journal of Advancements in Computing Technology, 2013, 5(4): 975-980. [7] JACOBSON N S.Corrosion of silicon‐based ceramics in combustion environments[J]. Journal of the American Ceramic Society, 1993, 76(1): 3-28. [8] KLEMM H.Corrosion of silicon nitride materials in gas turbine environment[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2735-2740. [9] EATON H E, LINSEY G D.Accelerated oxidation of SiC-CMC's by water vapor and protection via environmental barrier coating approach[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2741-2747. [10] OPILA E J.Oxidation and volatilization of silica formers in water vapor[J]. Journal of the American Ceramic Society, 2003, 86(8): 1238-1248. [11] PEREPEZKO J H.The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069. [12] PADTURE N P, GELL M, JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. [13] VASSEN R, JARLIGO M O, STEINKE T, et al.Overview on advanced thermal barrier coatings[J]. Surface & Coatings Technology, 2010, 205(4): 938-942. [14] NELSON W A, ORENSTEIN R M.TBC experience in land-based gas turbines[J]. Journal of Thermal Spray Technology, 1997, 6(2): 176-180. [15] NICHOLLS J R, LAWSON K J, JOHNSTONE A, et al.Methods to reduce the thermal conductivity of EB-PVD TBCs[J]. Surface and Coatings Technology, 2002, 151: 383-391. [16] KRÄMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10): 3167-3175. [17] TU T Z, LIU J X, ZHOU L, et al.Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material[J]. Journal of the European Ceramic Society, 2022, 42(2): 649-657. [18] WITZ G, SHKLOVER V, STEURER W, et al.High- temperature interaction of yttria stabilized zirconia coatings with CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Surface and Coatings Technology, 2015, 265: 244-249. [19] PUJOL G, ANSART F, BONINO J P, et al.Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J]. Surface and Coatings Technology, 2013, 237: 71-78. [20] GUO L, YAN Z, YU Y, et al.CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1 250 ℃-1 350 ℃[J]. Corrosion Science, 2019, 154: 111-122. [21] STANEK C R, JIANG C, UBERUAGA B P, et al.Predicted structure and stability of A4B3O12 δ-phase compositions[J]. Physical Review B, 2009, 80(17): 174101. [22] 胡万鹏. 几种稀土铪酸盐的制备与性能研究[D]. 合肥: 中国科学技术大学, 2019. HU Wanpeng.Synthesis and properties of some rare earth hafnates[D]. Hefei: University of Science and Technology of China, 2019. [23] DURAN P, PASCUAL C.Phase equilibria and ordering in the system HfO2-Yb2O3[J]. Journal of Materials Science, 1984, 19(4): 1178-1184. [24] POERSCHKE D L, VAN SLUYTMAN J S, WONG K B, et al. Thermochemical compatibility of ytterbia-(hafnia/silica) multilayers for environmental barrier coatings[J]. Acta Materialia, 2013, 61(18): 6743-6755. [25] GU S Y, ZHANG S Y, LIU F, et al.Microstructure and thermal shock performance of Y2Hf2O7 coating deposited on SiC coated C/C composite[J]. Applied Surface Science, 2018, 455: 849-855. [26] 冉书明. Ce微量掺杂Sm2Hf2O7氧化物的热物理性能[J]. 中国陶瓷, 2021, 57(8): 64-68. RAN Shuming, Thermophysical properties of Ce-doped Sm2Hf2O7 oxides[J]. China Ceramics, 2021, 57(8): 64-68. [27] HE L, PAN L, ZHOU W, et al.Thermal corrosion behavior of Yb4Hf3O12 ceramics exposed to calcium-ferrum-alumina- silicate (CFAS) at 1 400 ℃[J]. Journal of the European Ceramic Society, 2023, 43(9): 4114-4123. [28] UENO S, JAYASEELAN D D, KONDO N, et al.High- temperature water vapor corrosion behavior of Lu4Hf3O12 phase[J]. Ceramics International, 2004, 30(6): 865-867. [29] CONG L K, LI W, WANG J C, et al.High-entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: a promising thermal barrier coating material[J]. Journal of Materials Science & Technology, 2022, 101(6): 199-204. [30] ROST C M, SACHET E, BORMAN T, et al.Entropy- stabilized oxides[J]. Nature Communications, 2015, 6: 8485. [31] MIRACLE D B.High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys”[J]. The Journal of The Minerals, Metals & Materials Society, 2017, 69(11): 2130-2136. [32] YEH J W.Recent progress in high-entropy alloys[J]. Annales De Chimie-Science Des Materiaux, 2006, 31(6): 633-648. YEH J W.Recent progress in high-entropy alloys[J]. Annals of Chemistry-Materials Science, 2006, 31(6): 633-648. [33] 胡万鹏, 张广珩, 张洁, 等. 高熵稀土铪酸盐热障/环境障涂层材料的制备与性能研究[J]. 航空制造技术, 2023, 66(S1): 53-60. HU Wanpeng, ZHANG Guangheng, ZHANG Jie, et al.Synthesis and property of high-entropy rare earth hafnate as thermal/environmental barrier coating material[J]. Aeronautical Manufacturing Technology, 2023, 66(S1): 53-60. [34] ZHOU L, LI F, LIU J X, et al.High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2 Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying[J]. Journal of the European Ceramic Society, 2020, 40(15): 5731-5739. [35] LÓPEZ-COTA F A, CEPEDA-SÁNCHEZ N M, DÍAZ-GUILLÉN J A, et al. Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates[J]. Journal of the American Ceramic Society, 2017, 100(5): 1994-2004. [36] HU W P, ZHANG G H, LEI Y M, et al.Mechanical and thermal properties of δ‐RE4Hf3O12 (RE=Yb, Lu)[J]. International Journal of Applied Ceramic Technology, 2023, 20(2): 833-841. [37] 吕春菊. 高能球磨法制备含硼、碳、氮陶瓷的研究[D]. 杭州: 浙江大学, 2006. LÜ Chunju.Study on the synthesis of ceramics with boron, carbon, or nitrogen by high energy ball milling[D]. Hangzhou: Zhejiang University, 2006. [38] 刘雨薇, 农智升. 溶胶-凝胶法制备陶瓷涂层的研究现状[J]. 材料保护, 2023, 56(5): 173-179. LIU Yuwei, NONG Zhisheng.Research status of ceramic coatings prepared by sol-gel method[J]. Materials Protection, 2023, 56(5): 173-179. [39] 陈楷翰, 张奕添. 钨酸三乙醇胺热分解法合成碳化钨陶瓷涂层工艺及其对农药废水的电催化氧化能力初探[J]. 中国陶瓷, 2010, 46(3): 25-28. CHEN Kaihan, ZHANG Yitian.Synthesis of tungsten carbide ceramics coating research the study of wastewater treatment chemicals[J]. China Ceramics, 2010, 46(3): 25-28. [40] 胡宝云, 黄剑锋, 曹丽云, 等. 声化学法的研究现状及其在纳米陶瓷粉体制备中的应用[J]. 中国陶瓷, 2009, 45(12): 14-17. HU Baoyun, HUANG Jianfeng, CAO Liyun, et al.Present situation of research on sonochemical method & application of it on the preparation of nano ceramic-powder[J]. China Ceramics, 2009, 45(12): 14-17. [41] HU W P, LEI Y M, ZHANG J, et al.Mechanical and thermal properties of RE4Hf3O12 (RE=Ho, Er, Tm) ceramics with defect fluorite structure[J]. Journal of Materials Science & Technology, 2019, 35(9): 2064-2069. [42] DENG S X, HE G, YANG Z C, et al.Calcium-magnesium- alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings[J]. Journal of Materials Science & Technology, 2022, 107: 259-265. [43] CONG L K, ZHANG S Y, GU S Y, et al.Thermophysical properties of a novel high entropy hafnate ceramic[J]. Journal of Materials Science & Technology, 2021, 85: 152-157. [44] TIAN Z L, ZHENG L Y, WANG J M, et al.Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications[J]. Journal of the European Ceramic Society, 2016, 36(1): 189-202. [45] FRITSCH M, KLEMM H, HERRMANN M, et al.Corrosion of selected ceramic materials in hot gas environment[J]. Journal of the European Ceramic Society, 2006, 26(16): 3557-3565. [46] KLEMM H.Silicon nitride for high‐temperature applications[J]. Journal of the American Ceramic Society, 2010, 93(6): 1501-1522. [47] PAN L, HE L, NIU Z B, et al.Corrosion behavior of ytterbium hafnate exposed to water-vapor with Al(OH)3 impurities[J]. Journal of the European Ceramic Society, 2023, 43(2): 612-620. [48] YE F X, MENG F W, LUO T Y, et al.The CMAS corrosion behavior of high-entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 hafnate material prepared by ultrafast high-temperature sintering (UHS)[J]. Journal of the European Ceramic Society, 2023, 43(5): 2185-2195. [49] LIU S, HU X P, LIU Q, et al.Effect of HfO2 content on CMAS corrosion resistance of a promising Hf6Ta2O17 ceramic for thermal barrier coatings[J]. Corrosion Science, 2022, 208: 110712. [50] POERSCHKE D L, HASS D D, EUSTIS S, et al.Stability and CMAS resistance of ytterbium‐silicate/hafnate EBCs/ TBC for SiC composites[J]. Journal of the American Ceramic Society, 2015, 98(1): 278-286. [51] LI Y, CHEN M L, ZHANG Q Z, et al.Microstructure and corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1 400 ℃[J]. Journal of the European Ceramic Society, 2022, 42(8): 3427-3436. [52] HABIBI M H, WANG L, LIANG J D, et al.An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4+V2O5 salt at 1 100 ℃[J]. Corrosion Science, 2013, 75: 409-414. [53] DE LA ROCHE J, ALVARADO-OROZCO J M, GÓMEZ P A, et al. Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4+V2O5 molten salts[J]. Surface and Coatings Technology, 2022, 432: 128066. [54] GU S Y, ZHANG S Y, JIA Y, et al.Evaluation of hot corrosion behavior of SrHfO3 ceramic in the presence of molten sulfate and vanadate salt[J]. Journal of Alloys and Compounds, 2017, 728: 10-18. [55] LI Y, SUN Z P, HE L, et al.Thermal corrosion behavior of Yb4Hf3O12 exposed to Na2SO4+V2O5 molten salt[J]. Journal of Alloys and Compounds, 2024, 1008: 176501. [56] RAGHAVAN S, MAYO M J.The hot corrosion resistance of 20 mol% YTaO4 stabilized tetragonal zirconia and 14 mol% Ta2O5 stabilized orthorhombic zirconia for thermal barrier coating applications[J]. Surface and Coatings Technology, 2002, 160(2/3): 187-196. [57] XU Z H, HE L M, TANG Z H, et al.Evolution of high temperature corrosion behavior of La2(Zr0.7Ce0.3)2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts[J]. Journal of Alloys and Compounds, 2012, 536: 106-112. [58] ZHONG X H, WANG Y M, XU Z H, et al.Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts[J]. Journal of the European Ceramic Society, 2010, 30(6): 1401-1408. [59] CHEN P J, XIAO P, TANG X, et al.Corrosion behavior and failure mechanism of SiC whisker and c-AIPO4 particle-modified novel tri-layer Yb2Si2O7/mullite/SiC coating in burner rig tests[J]. Journal of Advanced Ceramics, 2022, 11(12): 1901-1917. [60] WOLF M, MACK D E, GUILLON O, et al.Resistance of pure and mixed rare earth silicates against calcium- magnesium-aluminosilicate (CMAS): a comparative study[J]. Journal of the American Ceramic Society, 2020, 103(12): 7056-7071. [61] PU D M, CHEN P J, XIAO P, et al.Oxidation and thermal cycling behavior of c-AlPO4 and SiC whisker co-modified mullite deposited on SiC-C/SiC composites[J]. Surface and Coatings Technology, 2020, 400: 126201. [62] HE L, PAN L, ZHOU W, et al.Interaction and infiltration behavior between calcium-ferrum-alumina-silicate and Yb4Hf3O12 ceramics at various temperatures[J]. Journal of the American Ceramic Society, 2024, 107(1): 475-487. [63] HE L, PAN L, ZHOU W, et al.Corrosion behavior of Yb4Hf3O12 ceramics exposed to calcium-ferrum-alumina- silicate (CFAS) coupled with water vapor at 1 400 ℃[J]. Corrosion Science, 2023, 214: 110954. [64] DANG X, YUAN J Y, WANG J S, et al.Plasma sprayed Yb4Hf3O12 thermal barrier coatings with excellent thermophysical properties and robust CMAS corrosion resistance[J]. Ceramics International, 2023, 49(16): 27473-27485. [65] WEN J, GAO C, LI Y H, et al.Ion irradiation induced order-to-disorder transformation in δ-phase Lu4Hf3O12[J]. Nuclear Instruments & Methods in Physics Research Section B, 2013, 310: 1-5. [66] TSAI P C, LEE J H, HSU C S.Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5[J]. Surface and Coatings Technology, 2007, 201(9/10/11): 5143-5147. [67] CHEN Z, WU N Q, SINGH J, et al.Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt[J]. Thin Solid Films, 2003, 443(1/2): 46-52. [68] WU N Q, CHEN Z, MAO S X.Hot corrosion mechanism of composite alumina/yttria-stabilized zirconia coating in molten sulfate-vanadate salt[J]. Journal of the American Ceramic Society, 2005, 88(3): 675-682. [69] AFRASIABI A, SAREMI M, KOBAYASHI A.A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+Al2O3 and YSZ/ Al2O3[J]. Materials Science and Engineering A, 2008, 478(1/2): 264-269.