Adsorption performance of acid scarlet GR by γ-AlOOH prepared with hydrothermal method
LÜ Fengcheng1, WANG Ding1, LI Zhonglin1, LI Yuping1, LI Yibing1, HE Guixiang2
1. School of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China; 2. School of Metallurgical and Resources Engineering, Guilin University of Technology (Nanning Campus), Nanning 530000, China
Abstract:Using aluminum sulfate octadecahydrate as the aluminum source and urea as the precipitant, the γ-AlOOH adsorbent was prepared by hydrothermal synthesis. The microstructure, morphology and adsorption performance of γ-AlOOH were analyzed and tested by X-ray diffractometer (XRD), scanning electron microscope (SEM) and N2 adsorption-desorption method. The effects of adsorption time, initial pH and initial mass concentration of acidic scarlet GR solution on the adsorption performance of acid scarlet GR by γ-AlOOH were studied as well. The results show that the γ-AlOOH adsorbent has a core-shell micron-flower hierarchical structure with high purity, a specific surface area of 205.07 m2/g, and an average pore size of 3.07 nm. When the initial mass concentration of the acid scarlet GR solution is 300 mg/L, the volume is 200 mL, the pH value is 2, and the temperature is 25 ℃, the adsorption amount of acid scarlet GR by 1 g γ-AlOOH reaches 470.65 mg, the removal rate is 78.44%. The adsorption kinetics of the adsorption process conforms to the pseudo-second-order kinetic model, and the adsorption thermodynamics conforms to the Langmuir thermodynamic model. After 8 cycles of adsorption, the adsorption amount of acid scarlet GR by 1 g γ-AlOOH regenerated adsorbent in 300 mg/L acid scarlet GR solution can still reach 422.57 mg, and the removal rate is 70.43%.
吕凤程, 王丁, 李中林, 李玉平, 李义兵, 何贵香. 水热法制备γ-AlOOH对酸性大红GR的吸附性能[J]. 粉末冶金材料科学与工程, 2022, 27(5): 550-558.
LÜ Fengcheng, WANG Ding, LI Zhonglin, LI Yuping, LI Yibing, HE Guixiang. Adsorption performance of acid scarlet GR by γ-AlOOH prepared with hydrothermal method. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 550-558.
[1] 阮梁枫, 王靖, 沈青青. 染料废水处理技术研究[J]. 清洗世界, 2021, 37(12): 52-53. RUAN Liangfeng, WANG Jing, SHENG Qingqing.Dye wastewater treatment technology research[J]. Cleaning World, 2021, 37(12): 52-53. [2] 谢艳新, 刘海娟, 尚磊, 等. 染料废水处理最新研究进展[J]. 印染助剂, 2020, 37(7): 11-16. XIE Yanxin, LIU Haijuan, SHANG Lei, et al.The latest research progress of dye wastewater treatment[J]. Textile Auxiliaries, 2020, 37(7): 11-16. [3] 崔玉民, 殷榕灿. 染料废水处理方法研究进展[J]. 科技导报, 2021, 39(18): 79-87. CUI Yumin, YIN Rongcan.Research progress of dye wastewater treatment methods[J]. Science & Technology Review, 2021, 39(18): 79-87. [4] 董衍玲. 多孔材料吸附去除染料废水中有机染料的研究[D]. 哈尔滨: 哈尔滨师范大学, 2011. DONG Yanling.Removal of dye elements from colored effluents by porous material[D]. Harbin: Harbin Normal University, 2011. [5] 季洪海, 凌凤香, 王鹏, 等. 棒状γ-氧化铝/火山岩基多孔材料的制备及刚果红吸附性能初探[J]. 燃料化学学报, 2021, 49(7): 1049-1056. JI Honghai, LING Fengxiang, WANG Peng, et al.Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1049-1056. [6] 秦彬, 谷晋川, 殷萍, 等. 染料废水处理技术研究进展[J]. 化工环保, 2021, 41(1): 9-18. QIN Bin, GU Jinchuan, YIN Ping, et al.Research progresses on dye wastewater treatment technology[J]. Environmental Protection of Chemical Industry, 2021, 41(1): 9-18. [7] ZHANG L, JIAO X L, CHEN D R, et al.γ-AlOOH nanomaterials with regular shapes: hydrothermal fabrication and Cr2O72- adsorption[J]. European Journal of Inorganic Chemistry. 2011, 34: 5258-5264. [8] 孙菲, 肖庆, 刘旭隆, 等. 纳米Fe2O3粉末的表面吸附性能[J]. 粉末冶金材料科学与工程, 2014(1): 24-30. SUN Fei, XIAO Qing, LIU Xulong, et al.Water adsorptive property of nano-sized hematite[J]. Materials Science and Engineering of Powder Metallurgy, 2014(1): 24-30. [9] PENG G W, DING D X, XIAO F Z, et al.Adsorption of uranium ions from aqueous solution by amine-group functionalized magnetic Fe3O4 nanoparticle[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(3): 781-788. [10] WANG T, XU Y F, SU Q Y, et al.Hierarchical porous nanosheet-assembled MgO microrods with high adsorption capacity[J]. Materials Letters, 2014, 116: 332-336. [11] LOZHKOMOEV A S, KAZANTSEV S O, GLAZKOVA E A, et al.Synthesis, characterization and properties of porous micro/ nanostructures obtained by oxidizing aluminum nanoparticles with water in the presence of glass fibers[J]. Materials Research Express, 2018, 5(11): 115011. [12] MIAO Y E, WANG R Y, CHEN D, et al.Electrospun self-standing membrane of hierarchical SiO2@gamma-AlOOH (boehmite) core/sheath fibers for water remediation[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5353-5359. [13] KAMARI M, SHAFIEE S, SALIMI F, et al.Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution[J]. Desalination and Water Treatment, 2019, 161: 304-314. [14] SAPTIAMA I, KANETI Y V, YULIARTO B, et al.Biomolecule-assisted synthesis of hierarchical multilayered boehmite and alumina nanosheets for enhanced molybdenum adsorption[J]. Chemistry-a European Journal, 2019, 25(18): 4843-4855. [15] VO T K, PARK H K, NAM C W, et al.Facile synthesis and characterization of gamma-AlOOH/PVA composite granules for Cr (VI) adsorption[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 485-492. [16] WANG F, YUAN X, WANG D W.Hydrothermal synthesis of hierarchical boehmite (gamma-AlOOH) hollow microspheres with highly active surface[J]. AIP Advances, 2021, 11(6): 065209. [17] FENG K Z, RONG D Q, REN W A, et al.Hierarchical flower-like gamma-AlOOH and gamma-Al2O3 microspheres: synthesis and adsorption properties[J]. Materials Express, 2015, 5(4): 371-375. [18] LI G C, SUN Y Y, LI X B, et al.Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020)[J]. RSC Advances, 2016, 6(14): 11855-11862. [19] MURUGAN A V, SAMUEL V, RAVI V.Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method[J]. Materials Letters, 2006, 60(4): 479-480. [20] YANG W Y, GAO F M, WEI G D, et al.Ostwald ripening growth of silicon nitride nanoplates[J]. Crystal Growth & Design, 2010, 10(1): 29-31. [21] CAI W Q, YU J G, CHENG B, et al.Synthesis of Boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment[J]. Journal of Physical Chemistry C, 2009, 113(33): 14739-14746. [22] WU X Y, WANG D B, HU Z S, et al.Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures[J]. Material Chemistry and Physics, 2008, 109(2/3): 560-564. [23] BUTTERSACK C.Modeling of type IV and V sigmoidal adsorption isotherms[J]. Physical Chemistry Chemical Physics, 2019, 21(10): 5614-5626. [24] 杨中民, 王月平, 姚敬华, 等. γ-AlOOH自水溶液中对Eu(Ⅲ)离子及其配合物的吸附[J]. 云南化工, 2003, 30(3): 34-36, 73. YANG Zhongmin, WANG Yueping, YAO Jinghua, et al.Adsorption of Eu (Ⅲ) ion from γ-AlOOH aqueous solution[J]. Yunnan Chemical Technology, 2003, 30(3): 34-36, 73. [25] VOLLHARDT D, MELZER V.Phase transition in adsorption layers at the air-water interface: bridging to Langmuir monolayers[J]. Journal of Physical Chemistry B, 1997, 101(17): 3370-3375. [26] 郭春梅, 王志强, 黄晓东. 铁酸锌吸附水中酸性大红FG5N的研究[J]. 闽江学院学报, 2017, 38(2): 72-78. GUO Chunmei, WANG Zhiqiang, HUANG Xiaodong.Study on the adsorption of acid red FG5N from aqueous solutions by zinc ferrite[J]. Journal of Minjiang University, 2017, 38(2): 72-78. [27] 孙志勇, 商铁林, 王金东, 等. 四乙烯五胺接枝膨润土对酸性大红GR的吸附性能[J]. 化工进展, 2021, 40(5): 2873-2881. SUN Zhiyong, SHANG Tielin, WANG Jindong, et al.Adsorption properties of acid scarlet GR by tetraethylenepentamine grafted bentonite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2873-2881. [28] 危唯, 孙新鹏, 常城城, 等. TiO2纳米管石墨烯凝胶吸附酸性大红热力学研究[J]. 广州化工, 2018, 46(11): 25-28. WEI Wei, SUN Xinpeng, CHANG Chengcheng, et al.Thermodynamic study on adsorption of acid scarleton graphene hydrogel with titanium nanotube[J]. Guangzhou Chemical Industry, 2018, 46(11): 25-28. [29] 李克斌, 张涛, 魏红, 等. 壳聚糖吸附酸性大红及Cu2+对吸附的增强作用[J]. 环境科学, 2009, 30(9): 2586-2591. LI Kebin, ZHANG Tao, WEI Hong, et al.Adsorption of acid red 3r on chitosan and its enhancement by Cu2+ co-sorption[J]. Chinese Journal of Environmental Science, 2009, 30(9): 2586-2591. [30] 韩双艳, 李北罡. Ca/CTS/FA复合材料对酸性大红的吸附研究[J]. 农业资源与环境学报, 2016, 35(6): 1153-1159. HAN Shuangyan, LI Beigang.Adsorption of acid scarlet 3R by Ca/CTS/FA composite from aqueous solution[J]. Journal of Agro-Environment Science, 2016, 35(6): 1153-1159. [31] 钟伟, 夏颖帆, 翟杭玲, 等. 共沉淀法制备稀土Ce掺杂的纳米ZnO及其光催化降解染料的性能[J]. 无机化学学报, 2020, 36(1): 40-52. ZHONG Wei, XIA Yingfan, ZHAI Hangling, et al.Preparation by co-precipitation metbod and pbotocatalytic performances on tbe degradation of dyes of Ce3+-doped Nano-ZnO[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(1): 40-52.