Abstract:The eutectic Ga91.6Sn8.4 liquid metal can be served as the anode in Li-ion batteries. In this paper, the structure and kinetic properties of Ga91.6Sn8.4 and Ga91.6Sn8.4 with 10% (mole fraction, %, the same below) lithium intercalation (10Li-Ga91.6Sn8.4) were compared and analyzed by ab initio molecular dynamics. Calculation results show that there is no obvious differences in liquid structure between Ga91.6Sn8.4 and 10Li-Ga91.6Sn8.4, both of them exhibit short-range order. The introduction of Li induces the second peak of the radial distribution function of 10Li-Ga91.6Sn8.4 appear “split”, indicating that the order of the system increases and the melting points increases. In 10 Li-Ga91.6Sn8.4, the intercalation of Li reduces the diffusion coefficient of each atom in the system, and the attraction between Li-Sn atoms is significantly stronger than that of Li-Ga. Therefore, during the charging process, the Ga91.6Sn8.4 Li-ion liquid metal battery exhibits the tendency of liquid-to-solid transition.
丁安, 王建川. 共晶Ga-Sn与10Li-GaSn的第一原理分子动力学研究[J]. 粉末冶金材料科学与工程, 2022, 27(4): 345-350.
DING An, WANG Jianchuan. Ab initio molecular dynamics study on eutectic Ga-Sn and 10Li-GaSn. Materials Science and Engineering of Powder Metallurgy, 2022, 27(4): 345-350.
[1] KIM H, BOYSEN D A, NEWHOUSE J M, et al.Liquid metal batteries: past, present, and future[J]. Chemical Reviews, 2013, 113(3): 2075-2099. [2] 张坤, 彭勃, 郭姣姣. 化学储能技术在大规模储能领域中的应用现状与前景分析[J]. 电力电容器与无功补偿, 2016, 37(2): 57-59. ZHANG Kun, PENG Bo, GUO Jiaojiao.Application status and prospective analysis of chemical energy storage technology in large-scale energy storage field[J]. Power Capacitor & Reactive Power Compensation, 2016, 37(2): 57-59. [3] EAKER C B, DICKEY M D.Liquid metal actuation by electrical control of interfacial tension[J]. Applied Physics Reviews, 2016, 3(3): 149-162. [4] GUO X, ZHANG L, DING Y, et al.Room-temperature liquid metal and alloy systems for energy storage applications[J]. Energy & Environmental Science, 2019, 12(9): 2605-2619. [5] DESHPANDE R D, LI J, CHENG Y, et al.Liquid metal alloys as self-healing negative electrodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(8): 845-849. [6] WU Y, HUANG L, HUANG X, et al.A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life[J]. Energy & Environ Science, 2017, 10(8): 1854-1861. [7] ZHAO X, BAI Y, LI X, et al.The dissection of atomic clusters with local structure in Ga-Sn alloy melts[J]. AIP Advances, 2018, 8(10): 1-6. [8] WOODWARD C, ASTA M, TRINKLE D R, et al.Ab initio simulations of molten Ni alloys[J]. Journal of Applied Physics, 2010, 107(11): 1861-1888. [9] YU S, KAVIANY M.Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles[J]. Journal of Physical Chemistry C, 2014, 140(6): 064303. [10] HOSHINO K.Structure of liquid metals by ab initio molecular-dynamics simulations[J]. Journal of Physics Condensed Matter, 2009, 21(47): 474212. [11] 刘媛媛, 贾国斌, 杨斌. 液态Pb-Cu合金结构与扩散性质的分子动力学模拟[J]. 材料导报, 2011, 25(6): 5-8. LIU Yuanyuan, JIA Guobin, YANG Bin.Molecular dynamics simulation of the structure and diffusion properties of liquid Pb-Cu alloys[J]. Materials Reports, 2011, 25(6): 5-8. [12] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set-sciencedirect[J]. Computational Materials Science, 1996, 6(1): 15-50. [13] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. [14] NOSÉ S.A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics, 1984, 81(1): 511-519. [15] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1998, 77(18): 3865-3868. [16] GANCARZ T.Density, surface tension and viscosity of Ga-Sn alloys[J]. Journal of Molecular Liquids, 2017, 241: 231-236. [17] LI D, DELSANTE S, GONG W, et al.Partial and integral enthalpies of mixing of Ag-Ga-Sn liquid alloys[J]. Thermochim Acta, 2011, 523(1/2): 51-62. [18] DOBOSZ A, PLEVACHUK Y, SKLYARCHUK V, et al.The influence of Li on the thermophysical properties of liquid Ga-Sn-Zn eutectic alloys[J]. Journal of Materials Science Materials in Electronics, 2019, 30(20): 18970-18980. [19] FELS J, BERGER P, REICHMANN T L, et al.Calorimetric studies of mixing enthalpy in the liquid system Ga-Li, and Ga-Li-Sn[J]. Journal of Molecular Liquids, 2019, 295: 111578. [20] 张强, 陈辉, 秦敬玉. Ga-Sn合金液态结构研究[J]. 金属功能材料, 2018, 25(4): 13-16. ZHANG Qiang, CHEN Hui, QIN Jingyu.Study on liquid structure of Ga-Sn alloy[J]. Metal Functional Materials, 2018, 25(4): 13-16. [21] FRENKEL J I.Kinetic Theory of Liquids[M]. USA: Dover Publications, 1955: 4820-4821.