|
|
Preparation of Ni-Fe alloy by carbothermal reduction of high iron red mud |
SUN Kai1,2, WANG Wei1,2, ZHANG Ziyang1,2, ZHU Guang3 |
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China; 2. Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023, China; 3. Yichuan Power Group Corporation, Luoyang 471312, China |
|
|
Abstract Ferro-nickel alloy was prepared by direct reduction at high temperature with Bayer process using high iron red mud and laterite nickel ore as raw materials and coke powder as reducing agent. The effects of different reduction conditions on the reduction process of red mud and laterite nickel ore were studied by analyzing and testing the alloys and residues prepared at different temperatures, reducing agent ratio and additive ratio. The results show that the reduction yield of the alloy increases with the increase of the coke powder contents of reducing agent. When the addition ratio of coke powder is 30% and the reduction temperature is 1 550 ℃, the total recovery of the iron alloy reaches 89.6%. With the addition of additives CaO and Na2CO3, the separation effect of metal and slag is significantly improved. When the addition ratio of Na2CO3 is 6%, the nickel in laterite nickel ore will be reduced completely to the alloy. The retained austenite decreases and then transforms into martensite and improves the Rockwell hardness to 52.5.
|
Received: 05 April 2021
Published: 22 December 2021
|
|
|
|
|
[1] 李新. 赤泥资源化利用与展望[J]. 资源信息与工程, 2020, 35(3): 133-135, 139. LI Xin.The comprehensive utilization and prospect of red mud resources[J]. Nonferrous Metals Abstract, 2020, 35(3): 133-135, 139. [2] 朱军, 兰建凯. 赤泥的综合回收与利用[J]. 矿产保护与利用, 2008 (2): 52-54. ZHU Jun, LAN Jiankai.Comprehensive recovery and utilization of red mud[J]. Conservation and Utilization of Mineral Resources, 2008(2): 52-54. [3] 肖雄, 张润宇, 龙健, 等. 赤泥治理地表水体与底泥磷污染的研究进展[J]. 矿物学报, 2017, 37(6): 764-770. XIAO Xiong, ZHANG Runyu, LONG Jian, et al.Application of red mud in phosphorus pollution control of surface sewage and sediment[J]. Acta Mineralogica Sinica, 2017, 37(6): 764-770. [4] ZHANG N, LI H, LIU X.Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials[J]. Journal of Hazardous Materials, 2016, 314: 172-180. [5] 罗丹, 李紫龙, 杜秋, 等. 赤泥综合利用研究进展[J]. 科技创新与应用, 2020(15): 75-76. LUO Dan, LI Zilong, DU Qiu, et al.Research Progress on comprehensive utilization of red mud[J]. Technology Innovation and Application, 2020(15): 75-76. [6] 王维, 刘伟, 张鹏飞, 等. 原料粒径与成分对赤泥/钢渣陶瓷材料结构与性能的影响[J]. 粉末冶金材料科学与工程, 2015, 20(5): 782-787. WANG Wei, LIU Wei, ZHANG Pengfei, et al.Effects of particle size and composition of raw material on microstructure and properties of red mud /steel slag ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(5): 782-787. [7] XIE W M, ZHOU F P, BI X L, et al.Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions[J]. Journal of Hazardous Materials, 2018, 358(9): 441-449. [8] 常军, 邵延海, 李硕, 等. 云南某赤泥还原焙烧-磁选试验研究[J]. 轻金属, 2017(8): 8-14. CHANG Jun, SHAO Yanhai, LI Shuo, et al.Reduction roasting -magnetic separation study of red mud in Yunnan[J]. Light Metals, 2017(8): 8-14. [9] 王洪, 佘雪峰, 赵晴晴, 等. 高铁赤泥直接还原制备珠铁[J]. 过程工程学报, 2012, 12(5): 816-821. WANG Hong, YU Xuefeng, ZHAO Qingqing, et al.Production of iron nuggets using iron-rich red mud by direct reduction[J]. Chinese Journal of Process Engineering, 2012, 12(5): 816-821. [10] 何奥平, 曾晓乐, 曾建民, 等. 拜耳法赤泥碳热还原制备铁合金[J]. 机械工程材料, 2016, 40(5): 47-51. HE Aoping, ZENG Xiaole, ZENG Jianmin, et al.Preparation of iron alloy by carbothermic reduction from bayer red mud[J]. Materials For Mechanical Engineering, 2016, 40(5): 47-51. [11] 庄锦强. 高铁氧化铝赤泥中铁回收技术研究[J]. 湖南有色金属, 2014, 30(2): 32-35, 71. ZHUANG Jinqiang.Study on the technology of iron recovery from high iron content alumina red mud[J]. Hunan Nonferrous Metals, 2014, 30(2): 32-35, 71. [12] OCHSENKÜHN-PETROPULU M, LYBEROPULU T, PARISSAKIS G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method[J]. Analytica Chimica Acta, 1995, 315(1/2): 231-237. [13] 曹瑛, 李卫东, 刘艳改. 工业废渣赤泥的特性及回收利用现状[J]. 硅酸盐通报, 2007, 26(1): 143-145. CAO Ying, LI Weidong, LI Yangai.Properties of red mud and current situation of its utilization[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1): 143-145. [14] 王延玲, 于存贞. 赤泥资源化应用技术关键及最新应用展望[J]. 轻金属, 2019(3): 13-15. WANG Yanling, YU Cunzhen.Key technologies of red mud resource utilization and prospects of latest technologies[J]. Light Metals, 2019(3): 13-15. [15] 李玉萍, 徐晓伟, 王碧燕, 等. LiF和CaF2助熔效果的研究[J]. 北京科技大学学报, 2002, 24(4): 429-431. LI Yuping, XU Xiaowei, WAMG Biyan, et al.Research on the fluxed effect of LiF and CaF2[J]. Journal of University of Science and Technology Beijing, 2002, 24(4): 429-431. [16] 何鹏, 居殿春, 沈朋飞, 等. 基于直接还原熔分的赤泥综合利用试验研究[J]. 冶金能源, 2017, 36(4): 57-60. HE Peng, JU Dianchun, SHEN Pengfei, et al.Experimental research on comprehensive utilization of red mud based on direct reduction and melting by RHF iron bead technology[J]. Energy For Metallurgical Industry, 2017, 36(4): 57-60. [17] LI X, XIAO W, LIU W, et al.Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1342-1347. [18] 罗星, 李尽善, 马荣锴, 等. 赤泥开发利用技术回顾与展望[J]. 矿产与地质, 2019, 33(1): 174-180. LUO Xing, LI Jinshan, MA Rongkai, et al.Exploitation of red mud-a review[J]. Mineral Resources and Geology, 2019, 33(1): 174-180. [19] 丁冲, 周卫宁, 单志强, 等. 还原焙烧赤泥-综合回收铁铝研究[J]. 矿冶工程, 2016(5): 103-106. DING Chong, ZHOU Weining, SHAN Zhiqiang, et al.Recovery of iron and aluminum from red mud by reduction roasting[J]. Mining and Metallurgical Engineering, 2016(5): 103-106. [20] 薛群虎, 陈延伟. 拜耳法高铁赤泥回收铁的试验研究[J]. 矿物岩石, 2011, 31(4): 7-12. XUE Qunhu, CHEN Yanwei.Experimental study of iron recovering from high iron contained red mud by Bayer process[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 7-12. [21] 卢红波. 红土镍矿电炉还原熔炼镍铁合金的热力学研究[J]. 稀有金属, 2012, 36(5): 785-790. LU Hongbo.Thermodynamic research on production of ferronickel alloy by electric furnace reduction from lateritic nickel ore[J]. Chinese Journal of Rare Metals, 2012, 36(5): 785-790. [22] 郭亚光, 朱荣, 吕明, 等. 红土镍矿选择性还原--熔分制备镍铁合金[J]. 北京科技大学学报, 2014, 36(5): 584-591. GUO Yaguang, ZHU Rong, LU Ming, et al.Extraction of a nickel-iron alloy from nickel laterite ore through selective reduction and smelting process[J]. Journal of University of Science and Technology Beijing, 2014, 36(5): 584-591. [23] 倪文, 贾岩, 徐承焱, 等. 难选鲕状赤铁矿深度还原-磁选实验研究[J]. 北京科技大学学报, 2010, 32(3): 287-291. NI Wen, JIA Yan, XU Chengyan, et al.Beneficiation of unwieldy oolitic hematite by deep reduction and magnetic separation process[J]. Journal of University of Science and Technology Beijing, 2010, 32(3): 287-291. [24] 蒋波, 胡学文, 周乐育, 等. 0.6Ni中碳合金钢的奥氏体连续冷却转变行为[J]. 金属热处理, 2020, 45(4): 10-15. JIANG Bo, HU Xuewen, ZHOU Leyu, et al.Continuous cooling transformation behavior of austenite in 0.6Ni alloyed medium carbon steel[J]. Heat Treatment of Metals, 2020, 45(4): 10-15. [25] 刘伟, 伏利, 陈小明, 等. 激光熔覆FeCr和CoCr合金涂层的组织与性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 267-272. LIU Wei, FU Li, CHEN Xiaoming, et al.Microstructure and properties of FeCr and CoCr laser cladding coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 267-272. |
|
|
|