|
|
Effect of Ti powder activation on preparation of Ti(C,N) powder by carbothermal reduction and nitridation |
XIE Junlong, LI Kaihua, YE Jinwen |
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China |
|
|
Abstract The kinetics and phase evolution of Ti(C,N) formation process by-carbothermal reduction and nitridation of titania (TiO2), carbon and tailing Ti powder as activator were investigated using TG/DSC, XRD. The Kissinger- Akahira-Sunose (KAS) method was used to calculate the activation energies that Ti3O5 reacted to form Ti(C,N) in the system without adding and adding tailing Ti powder, which were (5 053.34±683.64) kJ/mol and (4 485.46±687.33) kJ/mol respectively. The result indicated that tailing Ti could effectively reduce the activation energy of the carbothermal reduction and nitridation reaction; the phase evolution study of the process showed that Ti reacted with TiO2 to form Ti4O7 at 800 ℃, which directly surpassed the TinO2n-1(n>4),a series of intermediate phase transformation process, single-phase Ti(C,N) could be obtained by holding at 1 400 ℃ for 0.5 h; Finally, the oxygen content of 0.34%, the free carbon content of 0.33% and high-quality Ti(C,N) powder with a particle size of 1-2 μm was prepared at 1 750 ℃ for 4 h.
|
Received: 18 March 2022
Published: 15 November 2022
|
|
|
|
|
[1] YING P, MIAO H, PENG Z.Development of TiCN-based cermets: Mechanical properties and wear mechanism[J]. International Journal of Refractory Metals & Hard Materials, 2013, 39(7): 78-89. [2] KRAL C, LENGAUER W, RAFAJA D, et al.Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides[J]. Journal of Alloys and Compounds, 1998, 265(1): 215-33. [3] 吴学文. 碳氮化钛基金属陶瓷刀具材料的制备工艺与力学性能[D]. 厦门: 厦门理工学院, 2015. WU Xuewen.Preparation processes and mechanical properties of titanium carbonitride-based cermet tool materials[D]. Xiamen: Xiamen University of Technology, 2015. [4] LANDFRIED R, FRANK K, GADOW R, et al.Development of electrical discharge machinable ZTA ceramics with 24vol% of TiC, TiN, TiCN, TiB2 and WC as electrically conductive phase[J]. International Journal of Applied Ceramic Technology, 2012, 10(3): 509-518. [5] ZHIGACH A N, LEIPUNSKY I O, KUSKOV M L, et al.Synthesis of pure titanium carbide and titanium carbide/hydride core-shell nanoparticles via the flow-levitation method, and their characterization[J]. Journal of Alloys and Compounds, 2020, 819: 153054-153061. [6] BERGER L M.Application of hardmetals as thermal spray coatings[J]. International Journal of Refractory Metals & Hard Materials, 2015, 49: 350-364. [7] BRKELMANN M, MCKEOWN M.Heavy copper wire bonding ready for industrial mass production[C]// International Symposium on 3D Power Electronics Integration and Manufacturing. Germany: HESSE MECHATRONICS, 2015: 399-405. [8] HUANG J, MIAO Y, MENG Z, et al.Hot-pressed sintered Ca-α-Sialon ceramics with grains from short prismatic to elongated morphology synthesized via carbothermal reduction and nitridation[J]. Journal of Alloys and Compounds, 2018, 767: 90-97. [9] WU K H, JING Y, JIAO S Q, et al.Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method[J]. Journal of Solid State Chemistry, 2019, 277: 793-803. [10] BERGER L M, GRUNER W.Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20(3): 235-251. [11] GOU H P, ZHANG G H, CHOU K C.Formation of submicrometer titanium carbide from a titanium dioxide encapsulated in phenolic resin[J]. Journal of Materials Science, 2016, 51(14): 7008-7015. [12] KOC R, GLATZMAIER G C. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride, US5417952 A[P].1995-05-23. [13] 李畅,卜亚杰, 郝剑涛, 等. 空气和氮气气氛下的钛粉反应特性研究[J]. 工业安全与环保, 2018, 44(7): 1-17. LI Chang, PU Yajie, HAO Jiangtao, et al.Study on reaction characteristics of titanium powder in air and nitrogen atmosphere[J]. Industrial Safety and Environmental Protection, 2018, 44(7): 1-17. [14] NADIMI H, SOLTANIEH M, SARPOOLAKY H.The formation mechanism of nanocrystalline TiC from KCl-LiCl molten salt medium[J]. Journal of Ceramics International, 2020, 46: 18725-18733. [15] 何旭, 叶金文, 刘颖, 等. 开放体系下碳热还原法制备碳氮化钛粉末的研究[J]. 功能材料, 2009, 40(5): 771-773. HE Xu, YE Jinwen, LIU Ying, et al.Preparation of titanium carbonitride powder by carbothermal reduction in open system[J]. Journal of Functional Materials, 2009, 40(5): 771-773. [16] LIM A, CHIN B, JAWAD Z A, et al.Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method[J]. Procedia Engineering, 2016, 148: 1247-1251. [17] CHEN J B, WANG Y H, LANG X M, et al.Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics[J]. Bioresource Technology, 2017, 241: 340-348. [18] SHARMA P, PANDEY O P.Thermal kinetics involved during the solid-state synthesis of Cr2AlC MAX phase[J]. Journal of Thermal Analysis and Calorimetry, 2020, 143(6): 3997-4008. [19] 梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993. LIANG Yingjiao, CHE Yinchang.Handbook of Thermodynamic Data for Inorganic Sances[M]. Shenyang: Northeastern University Press, 1993. [20] PING C S, GHANI J A, RIZAL M, et al.Surface characterisation of TiCxN1-x coatings processed by cathodic arc physical vapour deposition: XPS and XRD analysis[J]. Surface and Interface Analysis, 2019, 51(7): 611-617. [21] RAJABI A, HODGSON P, GHAZALI M J, et al.Challenges and solutions in the synthesis of nano-TiCN: a review[J]. Ceramics International, 2022, 48(7): 8921-8929. [22] 余鹏飞, 叶金文, 刘颖, 等. 几种碳源对碳热还原氮化法制备Ti(C,N)粉末的影响[J]. 功能材料, 2011, 42(5): 850-853. YU Pengfei, YE Jinwen, LIU Ying, et al.Effect of several carbon sources on preparation of Ti(C,N) powders by carbothermal reduction and nitridation[J]. Journal of Functional Materials, 2011, 42(5): 850-853. |
|
|
|