|
|
Effects of sintering aids on microstructure and properties of non-isothermal sintering alumina ceramics |
FANG Haojie1,3, HE Yiwen1,3, ZHANG Xiaoyun1,3, NIU Wenbin2, WU Lixiang2, GUO Weiming2, HUANG Rongxia2, QIAO Guanjun3, LIN Huatai2, ZENG Xiong3,4 |
1. Hunan Meicheng Ceramics Technology Co., Ltd., Loudi 417600, China; 2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; 3. Hunan Engineering Research Center of Electronic Functional Ceramics, Loudi 417600, China; 4. Hunan Jialixin Ceramic Technology Co., Ltd., Loudi 417600, China |
|
|
Abstract On the basis of pressure less sintering, the effects of MgO-Y2O3, MgO-Y2O3-La2O3 additives and sintering process containing one-step and two-step non-isothermal sintering on the microstructure and properties of Al2O3 ceramics were studied. The results show that using non-isothermal sintering method can significantly refine the Al2O3 grains. When MgO-Y2O3 are used as sintering aids, the closed porosity of Al2O3 ceramics prepared by one-step sintering and two-step non-isothermal sintering method are 1.88% and 3.93%, respectively, and its corresponding Al2O3 grains are 0.42 μm and 0.38 μm, respectively. At the same time, when MgO-Y2O3-La2O3 are used as sintering additives, the closed porosity of ceramics prepared by one-step sintering method and two-step non-isothermal sintering method are 3.59% and 2.82%, respectively, and its corresponding Al2O3 grains are 0.40 μm and 0.42 μm, respectively. When MgO-Y2O3 and MgO-Y2O3-La2O3 are used as sintering aids, the Al2O3 ceramics prepared in a one-step sintering process have higher hardness, and they are (18.3±0.5) GPa and (18.2±0.6) GPa, respectively. In order to obtain the higher fracture toughness, it is necessary to use MgO-Y2O3 as a sintering aid to prepare Al2O3 ceramic by one-step sintering method, and the fracture toughness value can reach (4.6±0.3) MPa·m1/2.
|
Received: 16 August 2021
Published: 22 December 2021
|
|
|
|
|
[1] 李国星, 卢红霞, 孙洪巍, 等. MgB2等镁化物添加剂对氧化铝陶瓷晶粒生长形貌的影响[J]. 中国陶瓷工业, 2005, 12(1): 12-14. LI Guoxing, LU Hongxia, SUN Hongwei, et al.The effect of MgB2 and other magnesia additives on the grain growth morphology of alumina ceramics[J]. China Ceramic Industry, 2005, 12(1): 12-14. [2] 吴振东, 叶建东. 添加剂对氧化铝陶瓷的烧结和显微结构的影响[J]. 兵器材料科学与工程, 2002, 25(1): 68-72. WU Zhendong, YE Jiandong.The influence of additives on the sintering and microstructure of alumina ceramics[J]. Ordnance Material Science and Engineering, 2002, 25(1): 68-72. [3] LU J, PRABHU M, SONG J, et al.Optical properties and highly efficient laser oscillation of Nd:YAG ceramics[J]. Applied Physics B, 2000, 71(4): 469-473. [4] MOULTON P F.Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of America B Optical Physics, 1986, 3(1): 125-133. [5] JIANG L I, YUBAI P, JINWEI N, et al.Low temperature sintering of bimodal alumina powder mixtures with nanocrystalline component[J]. Journal of Inorganic Materials, 2003, 18(6): 1192-1198. [6] YOSHIMURA H N, GOLDENSTEIN H.Light scattering in polycrystalline alumina with bi-dimensionally large surface grains[J]. Journal of the European Ceramic Society, 2009, 29(2): 293-303. [7] 李莉, 张丽, 郭方全, 等. 热等静压烧结氧化铝陶瓷研究[J]. 硅酸盐通报, 2012, 31(5): 1228-1233. LI Li, ZHANG Li, GUO Fangquan, et al.Research on hot isostatic pressing sintered alumina ceramics[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1228-1233. [8] 范景莲, 徐浩翔, 黄伯云, 等. 金属-Al2O3陶瓷基复合材料的研究现状及应用前景[J]. 粉末冶金材料科学与工程, 2002(3): 200-206. FAN Jinglian, XU Haoxiang, HUANG Boyun, et al.Research status and application prospect of metal-Al2O3 ceramic matrix composites[J]. Materials Science and Engineering of Powder Metallurgy, 2002(3): 200-206. [9] JIANG D T, HULBERT D M, UMBERTO Anselmi-Tamburini, et al.Optically transparent polycrystalline Al2O3 produced by spark plasma sintering[J]. Journal of the American Ceramic Society, 2008, 91(1): 151-154. [10] 梁坚伟, 黄梅鹏, 刘伟, 等. MgO与Y2O3共掺杂对透明氧化铝陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(6): 557-562. LIANG Jianwei, HUANG Meipeng, LIU Wei, et al.Effect of Co-doping of MgO and Y2O3 on the structure and properties of transparent alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(6): 557-562. [11] YEE N, FEIN J B, DAUGHNEY C J.Experimental study of the ph, ionic strength, and reversibilitybehavior of bacteria-mineral adsorption[J]. Geochimica Et Cosmochimica Acta, 2000, 64(4): 609-617. [12] ROSSI G, BURKE J E.Influence of Additives on the Microstructure of Sintered Al2O3[J]. Journal of the American Ceramic Society, 1973, 56(12): 654-659. [13] 杨秋红, 曾智江, 徐军, 等. La2O3对氧化铝透明陶瓷显微结构和透光性能的影响[J]. 中国稀土学报, 2005, 23(6): 713-716. YANG Qiuhong, ZENG Zhijiang, XU Jun, et al.The effect of La2O3 on the microstructure and light transmittance of transparent alumina ceramics[J]. Journal of the Chinese Rare Earth Society, 2005, 23(6): 713-716. [14] 张志林, 伍尚华, 游洋. 常压烧结制备亚微米晶Al2O3陶瓷及其力学性能研究[J]. 材料导报, 2014, 28(24): 111-114. ZHANG Zhilin, WU Shanghua, YOU Yang.Atmospheric pressure sintering to prepare sub-micron Al2O3 ceramics and its mechanical properties[J]. Materials Reports, 2014, 28(24): 111-114. [15] CHU M, RAHAMAN M N, De Jonghe L C, et al. Effect of heating rate on sintering and coarsening[J]. Journal of the American Ceramic Society, 2010, 74(6): 1217-1225. [16] WANG J, RAJ R.Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with Zirconia or Titania[J]. Journal of the American Ceramic Society, 2010, 73(5): 1172-1175. [17] YOUNG W S, CUTLER I B.Initial sintering with constant rates of heating[J]. Journal of the American Ceramic Society, 2010, 53(12): 659-663. [18] WOOLFREY J L, BANNISTER M J.Nonisothermal techniques for studying initial-stage sintering[J]. Journal of the American Ceramic Society, 2010, 55(8): 390-394. [19] 鲁欣欣, 刘伟, 李林, 等. MgO-Y2O3-Re2O3添加对氮化硅陶瓷微观组织及性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(6): 536-541. LUXinxin, LIU Wei, LI Lin, et al.Effects of MgO-Y2O3-Re2O3 on microstructure and properties of Si3N4 ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(6): 536-541. |
|
|
|