|
|
Effects of annealing treatment on microstructure and properties of CrFeCoNiTi0.2 high-entropy alloys prepared by powder metallurgy |
JIANG Yue, ZHOU Guangtai, LI Xiuming, CHENG Simeng |
School of Science, Harbin University of Science and Technology, Harbin 150080, China |
|
|
Abstract The CrFeCoNiTi0.2 high-entropy alloy was prepared by powder metallurgy and was annealed at 450, 650 and 850 ℃. X-ray diffraction analysis, scanning electron microscopy, energy spectrum analysis, dynamic potential polarization curves and micro Vickers hardness test were conducted to study the effect of annealing treatment on microstructure and properties of powder metallurgy CrFeCoNiTi0.2 high entropy alloy. The results show that the sintered CrFeCoNiTi0.2 high-entropy alloy has FCC as the main phase and Laves phase as the secondary phase. After annealing, the crystallinity of the FCC phase increases, with the presence of new phases (HCP phase, R phase, σ phase). The self-corrosion potential Ecorr and the vickers hardness of the alloy both increase, and the higher the annealing temperature, the better the corrosion resistance and the higher the hardness. After annealing at 850 ℃, the vickers hardness (HV) of the alloy increases from 184 to 356.6.
|
Received: 11 April 2019
Published: 14 November 2019
|
|
|
|
|
Cite this article: |
JIANG Yue,ZHOU Guangtai,LI Xiuming, et al. Effects of annealing treatment on microstructure and properties of CrFeCoNiTi0.2 high-entropy alloys prepared by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 444-451.
|
|
|
|
URL: |
http://pmbjb.csu.edu.cn/EN/ OR http://pmbjb.csu.edu.cn/EN/Y2019/V24/I5/444 |
[1] 叶均蔚, 陈瑞凯, 林鹏均. 高熵合金[J]. 科学发展, 2004, 377(5): 16-21.<br />
YE Junwei, CHEN Ruikai, LIN Pengjun.High entropy alloys[J]. Scientific Development, 2004, 377(5): 16-21.<br />
[2] MUNITZ A, KAUFMAN MJ, NAHMANY, et al. Microstructure and mechanical properties of heat treated Al<sub>1.25</sub>CoCrCuFeNi high-entropy alloy[J]. Materials Science & Engineering, 2018, 714: 146-159.<br />
[3] ZHAO Y J, QIAO J W, MA S G, et al.A hexagonal close-packed high-entropy alloy: The effect of entropy[J]. Materials & Design, 2016, 96:10-15.<br />
[4] ZHANG Y, ZUO T T, TANG Z, et al.Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61(4): 1-93.<br />
[5] BUTLER T M, WEAVER M L.Oxidation behavior of arc melted A1CoCrFeNi multicomponent high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674(7): 229-244.<br />
[6] SENKOV O N, WILKS G B, SCOTT J M, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 19(5): 698-703.<br />
[7] GLUDOVATZ B, HONHENWARTER A, CATOOR D, et al.A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201):1153-1158.<br />
[8] NG C, GUO S, LUAN J, et al.Phase stability and tensile properties of Co-free Al<sub>0.5</sub>CrCuFeNi<sub>2</sub> high-entropy alloys[J]. Journal of Alloys and Compounds, 2014, 584(1): 530-537.<br />
[9] OTTO F, DLOUHY A, SOMSEN C, et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755.<br />
[10] WANG W R, WANG W L, YEH J W.Phases, microstructure and mechanical properties of Al<sub>x</sub>CoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2014, 589(3):143-152.<br />
[11] BUTER T M, WEAVER M L.Oxidation behavior of arc melted AlCoCrFeNi multicomponent high entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674(7): 229-244.<br />
[12] 谢红波, 刘贵仲, 郭景杰, 等.添加Al对Al<sub>x</sub>FeCrCoCuTi高熵合金组织与高温氧化性能的影响[J]. 稀有金属, 2016, 40(4): 315-321.<br />
XIE Hongbo, LIU Guizhong, GUO Jingjie, et al.Microstructure and high temperature oxidation properties of Al<sub>x</sub>FeCrCoCuTi high-entropy alloys with different Al contents[J]. Chinese Journal of Rare Metals, 2016(4): 315-321.<br />
[13] GORR B, AZIM M, CHRIST H J, et al.Heilmaier M, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 2015, 624(3): 270-278.<br />
[14] 田彦文, 任俊业, 黄千里, 等.退火温度对包套挤压FeCoCr- NiMo<sub>0.1</sub>高熵合金组织与摩擦性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(5): 41-46.<br />
TIAN Yanwen, REN Junye, HUANG Qianli, et al.Effects of annealing temperature on the microstructure and friction properties of FeCoCrNiMo<sub>0.1</sub> high-entropy alloy fabricated by canned extruding[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(5): 41-46.<br />
[15] YU Y, LIU W M, ZHANG T B, et al.Microstructure and tribological properties of AlCoCrFeNiTi<sub>0.5</sub> high-entropy alloy in hydrogen peroxide solution[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 201-208.<br />
[16] JI X L, DUAN H, ZHANG H, et al.Slurry erosion resistance of laser clad NiCoCrFeAl<sub>3</sub> high-entropy alloy coatings[J]. Tribology Transactions, 2015, 58(6): 1119-1123.<br />
[17] 郭富强, 任波. CuCrFeNiMn高熵合金的耐蚀性能研究[J]. 特种铸造及有色合金, 2019, 39(2): 202-206.<br />
GUO Fuqiang, REN Bo.Corrosion resistance of CuCrFeNiMn high-entropy alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(2): 202-206.<br />
[18] CHOU H P, CHANG Y S, CHEN S K, et al.Microstructure, thermophysical and electrical properties in Al<sub>x</sub>CoCrFeNi(0≤x≤2) high-entropy alloys[J]. Materials Science and Engineering B, 2009, 163(3): 184-189.<br />
[19] YEH A C, CHANG Y J, TSAI C W, et al.On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 184-190.<br />
[20] JIANG L, LU Y, DONG Y, et al.Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi<sub>0.5</sub> alloy casting ingot[J]. Intermetallics, 2014, 44: 37-43.<br />
[21] SHUN T T, CHANG L Y, SHIU M H.Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi<sub>x</sub>alloys[J]. Materials Science and Engineering A, 2012, 556: 170-174.<br />
[22] JOO S H, KATO H, JANG M J, et al.Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering[J]. Journal of Alloys and Compounds, 2017, 698: 591-604.<br />
[23] SHANG C, AXINTE E,SUN J, et al.CoCrFeNi(W<sub>l</sub>-<sub>x</sub>Mo<sub>x</sub>) high- entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials & Design, 2017, 117: 193-202.<br />
[24] 黄伯云, 易健宏. 现代粉末冶金材料和技术发展现状(二)[J].上海金属, 2007, 29(4): 1-7.<br />
HUANG Boyun, YI Jianhong.Development status of modern powder metallurgy materials and technologies (2)[J]. Shanghai Metal, 2007, 29(4): 1-7.<br />
[25] CHUANG M H, TSAI M H, WANG W R, et al.Microstructure and wear behavior of Al<sub>x</sub>Co<sub>1.5</sub>CrFeNi<sub>1.5</sub>Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308-6317.<br />
[26] 农智升, 张波, 朱景川. 退火对CrCuFeMnTi高熵合金组织结构和力学性能的影响[J]. 稀有金属材料与工程, 2018, 47(9): 2827-2832.<br />
NONG Zhisheng, ZHANG Bo, ZHU Jingchuan.Effect of annealing on microstructure and mechanical properties of CrCuFeMnTi high-entropy[J]. Alloy Rare Metal Materials and Engineering, 2018, 47(9): 2827-2832.<br />
[27] 付志强, 陈维平, 方思聪. Cr对CoFeNiAl<sub>0.6</sub>Ti<sub>0.4</sub>的合金化行为与组织的影响[J]. 稀有金属材料与工程, 2014, 43(10): 2411-2414.<br />
FU Zhiqiang, CHEN Weiping, FANG Sicong.Effect of Cr on alloying behavior and microstructure of CoFeNiAl<sub>0.6</sub>Ti<sub>0.4</sub>[J]. Rare Metal Materials and Engineering, 2014, 43(10): 2411-2414.<br />
[28] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al.A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.<br />
[29] 蒋淑英, 林志峰, 孙永兴. AlCoCrFeNi高熵合金铸态与退火态的耐蚀性[J]. 稀有金属材料与工程, 2018, 47(10): 277-282.<br />
JIANG Shuying, LIN Zhifeng, SUN Yongxing.Corrosion resistance of As-cast and annealed AlCoCrFeNi high-entropy alloys[J]. Rare Metal Materials and Engineering, 2018, 47(10): 277-282. |
|
|
|