|
|
Preparation and characterization of tubular porous loess ceramic membrane support |
MENG Feng, YANG Bowen, TONG Zhi, XING Jing, SUN Xiaojuan, WANG Lei |
College of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710600, China |
|
|
Abstract The new single-tube loess ceramic membrane supports were fabricated by rolling and sintering from α-Al2O3 as the external aluminum source, MgO as the sintering aid, CMC as pore former and loess as aggregate. In this work, the orthogonal experiment was designed to study the effect of α-Al2O3, MgO and CMC on the performance of the support. The results show that the order of factors affecting the water permeability of the support is CMC>α-Al2O3>MgO, and the order of factors affecting the bending strength of the support is α-Al2O3>CMC>MgO. When adding mass fraction of 15% α-Al2O3, 6%CMC, 0.5%MgO, the support prepared by holding for 3 h at 1 180 ℃ has the best performance, the flexural strength is 55.66 MPa, and the porosity is 28.7%, pure water flux is 83.63 m3/(m·h·bar), and the median pore size is 19.88 μm, in which the main peak pore volume accounts for more than 95% of the total pore volume, and the main peak pore size distribution ranges from 8.54-52.23 μm. The pore size distribution range is wide with a porosity of 28.7%. The main crystalline phases are quartz, feldspar, mullite, cordierite and cristobalite.
|
Received: 23 April 2019
Published: 14 November 2019
|
|
|
|
|
[1] 丁传中. 污水处理技术的新发展[J]. 河南科技, 2013(4): 182-208. DING Chuanzhong.New development of sewage treatment technology[J]. Journal of Henan Science and Technology, 2013(4): 182-208. [2] 汪锰, 王湛, 李政雄. 膜材料及其制备[M]. 北京: 化学工业出版社, 2003: 4-14. WANG Meng, WANG Zhan, LI Zhengxiong.Membrane Materials and Their Preparation[M]. Beijing: Chemical Industry Press, 2003: 4-14. [3] DONELSON R, PAULl G, CIACCHI F, et al.Permeation and strength characteristics of macroporous supports for gas separation produced by co-sintering mixtures of α-alumina and kaolin[J]. Journal of Membrane Science, 2014, 463(463): 126-133. [4] FUNG Y L E, WANG H. Nickel aluminate spinel reinforced ceramic hollow fibre membrane[J]. Journal of Membrane Science, 2014, 450(2): 418-424. [5] HUBADILLlAH S K, HARUN Z O, THMAN M H D, et al. Preparation and characterization of low cost porous ceramic membrane support from kaolin using phase inversion/sintering technique for gas separation: Effect of kaolin content and non-solvent coagulant bath[J]. Chemical Engineering Research & Design, 2016, 112(8): 24-35. [6] El R Y, ALABSII C, BACCHIN P, et al.Analysis of membrane fouling during cross-flow microfiltration of wine[J]. Innovative Food Science & Emerging Technologies, 2012, 16(39): 398-408. [7] JAROSLAV S, GALUSEK D, PETER Š, et al.Abrasive wear of Al2O3-SiC and Al2O3-(SiC)-C composites with micrometer-and submicrometer-sized alumina matrix grains[J]. Journal of the European Ceramic Society, 2008, 28(15): 2983-2993. [8] 岳翠芳, 黄建国. 凝胶注模碳化硅复相陶瓷支撑体的结构及性能[J]. 硅酸盐学报, 2017, 45(6): 811-816. YUE Cuifang, HUANG Jianguo.Structure and property of silicon carbide substrate with composite phase by gel-casting[J]. Journal of the Chinese Ceramic Society, 2017, 45(6): 811-816. [9] ISSAOUI M, LIMOUSY L, LEBEAU B, et al.Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: Application to algal solution concentration[J]. Environ Sci Pollut Res Int, 2017, 24(11): 1-13. [10] OUN A, TAHRI N, MAHHOUCHE-CHERGUI S, et al.Tubular ultra filtration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: Elaboration, characterization and application to dye removal[J]. Separation & Purification Technology, 2017, 188: 126-133. [11] ISSAOUI M, LIMOUSY L, LEBAUEB, et al. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration[J]. Environ Sci Pollut Res Int, 2017, 24(11): 1-13. [12] 刘晶. 低成本固废基无机陶瓷膜的反应制备与性能研究[D]. 广州: 华南理工大学, 2015. LIU Jing.Fabrication and investigation of low cost solid-waste based inorganic ceramic membranes[D]. Guangzhou: South China University of Technology, 2015. [13] GB/T 1966—1996, 多孔陶瓷显气孔率、容重试验方法[S]B/T 1966—1996, 多孔陶瓷显气孔率、容重试验方法[S]. 中国质检出版社, 1996. GB/T 1966—1996, Test method for apparent porosity and bulk density of porous ceramic[S]B/T 1966—1996, Test method for apparent porosity and bulk density of porous ceramic[S]. China Quality Inspection Publishing House,1996. [14] GB/T 2834—1998, 陶管吸水率试验方法[S]B/T 2834—1998, 陶管吸水率试验方法[S]. 北京: 中国标准出版社,1998. GB/T 2834—1998, Test method for water absorbation of vitrified clay pipe[S]B/T 2834—1998, Test method for water absorbation of vitrified clay pipe[S]. Beijing: Standards Press of China, 1998. [15] GB/T 2833—1996, 陶管弯曲强度试验方法[S]B/T 2833—1996, 陶管弯曲强度试验方法[S]. 北京: 中国标准出版社, 1996. GB/T 2833—1996, Test method for cross-bending strength of vitrified pipe[S]B/T 2833—1996, Test method for cross-bending strength of vitrified pipe[S]. Beijing: Standards Press of China, 1996. [16] GB/T 1970—1996, 多孔陶瓷耐酸、碱腐蚀性能试验方法[S]B/T 1970—1996, 多孔陶瓷耐酸、碱腐蚀性能试验方法[S]. 北京: 中国标准出版社, 1996. GB/T 1970—1996, Test method for acid and alkaline-resistance of porous ceramic[S]B/T 1970—1996, Test method for acid and alkaline-resistance of porous ceramic[S]. Beijing: Standards Press of China, 1996. [17] 秦娟, 崔崇, 崔晓昱, 等. 钙长石晶体的形成机制研究[J]. 人工晶体学报, 2016, 45(5): 1153-1157. QIN Juan, CUI Chong, CUI Xiaoyu et al. Study on formation mechanism of anorthite crystal[J]. Journal of Synthetic Crystals, 2016, 45(5): 1153-1157. |
|
|
|