|
|
Synthesis and photocatalytic property of SiO2 nanopowder coated by Cu/Ag-doped TiO2 |
GUAN Renfa1, XIAO Ya2, LIU Qiming1, LIU Shaojun1 |
1. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; 2. Hunan Provincial Institute of Cultural Relics and Archaeology, Changsha 410008, China |
|
|
Abstract The TiO2-coated SiO2 (TCS) nanocatalysts with about 12 nm thickness coating and high dipersity were synthesized by the sol-gel method. Based on the previous experiment, the photocatalytic efficiency of TCS catalysts was enhanced notably by doping Cu and Ag. The effects of coating and doping on the structure and photocatalytic activity of TiO2 and the relative mechanism were investigated by XRD, XPS, UV-vis and the photocatalytic degradation experiment of methyl orange. The results show that, the Ti—O—Si bonds between the interface of TiO2 and SiO2 have an impact on the crystallization process of TiO2 and restrain the growth of the grains. Cu2O-TiO2-SiO2 composite powder with excellent performance can be synthesized by controlling the experimental conditions. The reinforcement mechanism of doping Cu can be ascribed to the modification of Cu2O semiconductor to TiO2. The increasing of photocatalytic property is related to the oxygen vacancy and Cu2O particles. Doping Ag cannot change the width of the forbidden band but can improve the intensity of light absorption, and the photocatalytic degradation efficiency is 95.7% after doping 1.0%Ag.
|
Received: 07 April 2017
Published: 11 July 2019
|
|
|
|
|
[1] BEMS B, JENTOFT F C, SCHLÖGL R. Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids[J]. Applied Catalysis B: Environmental, 1999, 20(2): 155-163. [2] HERRMANN J M, GUILLARD C, DISDIER J, et al.New industrial titania photo catalysts for the solar detoxification of water containing various pollutants[J]. Applied Catalysis B: Environmental, 2002, 35(4): 281-294. [3] DALTON J S, JANES P A, JONES N G, et al.Photo catalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach[J]. Environmental Pollution, 2002, 120(2): 415-422. [4] CHEN X B, LIU L B, Huang F Q.Black titanium dioxide (TiO2) nanomaterials[J]. Chemical Society Reviews, 2015, 44(1): 1861-1885. [5] ZLAMAL M, MACAK J M, SCHMUKI P, et al.Electrochemically assisted photo catalysis on self-organized TiO2 nanotubes[J]. Electrochemistry Communications, 2007, 9(12): 2822-2826. [6] WANG Y B, WU J, WANG H N, et al.Effective balance of antireflection and self-cleaning properties via hollow silica nanospheres-based surface coated with scattered titania nanoparticles[J]. Solar Energy, 2015, 122(1): 763-772. [7] STANDRIGE S D, SCHATZ G C, JOSEPH T H, et al.Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2[J]. Langmuir, 2009, 25(5): 2596-2600. [8] GREELEY J, NØRSKOV J, MAVRIKAKIS M. Electronic structure and catalysis on metal surfaces[J]. Annual Review of Physical Chemistry, 2002, 53(1): 319-348. [9] LEE J W, KONG S, KIM W S, et al.Preparation and characterization of SiO2/TiO2 core-shell particles with controlled shell thickness[J]. Materials Chemistry and Physics, 2007, 106(1): 39-44. [10] 马清. 纳米晶TiO2半导体材料的可控制备与光电化学性能研究[D]. 深圳: 哈尔滨工业大学深圳研究生院, 2012: 56-69. MA Qing.Controllable synthesis and photo-electrochemical property of nano-crystalline TiO2 semiconductor[D]. Shenzhen: Shenzhen Graduate School of Harbin Institute of Technology, 2012: 56-69. [11] WANG C M, HELLER A, GERISCHER H.Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photo assisted oxidation of organic compounds[J]. Journal of the American Chemical Society, 1992, 114(13): 5230-5234. [12] AGUILAR T, NAVAS J, ALCÁNTARA R, et al. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap[J]. Chemical Physics Letters, 2013, 571(5): 49-53. [13] CHOI W Y, TERMIN A, MICHAEL R, et al.The Role of metal ion dopants in quantum-sized TiO2: Correlation between photo reactivity and charge carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679. [14] DUNNILL C W, PAGE K, AIKEN Z A, et al.Nanoparticulate silver coated-titania thin films—Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220(2-3): 113-123. [15] LI F, CAO B, MA R, et al.Performance of Cu/TiO2-SiO2 catalysts in hydrogenation of furfural to furfuryl alcohol[J]. Canadian Journal of Chemical Engineering, 2016, 94(7): 1368-1374. [16] HOANG T T, NGUYEN T V, SUC N V, et al.Bactericidal activities and synergistic effects of Ag-TiO2 and Ag-TiO2-SiO2 nanomaterials under UV-C and dark conditions[J]. International Journal of Nanotechnology, 2015, 12(5): 367-379. [17] PINHO L, ROJAS M, MARIA J.Ag-SiO2-TiO2 nanocomposite coatings with enhanced photo activity for self-cleaning application on building materials[J]. Applied Catalysis B: Environmental, 2015, 178(1): 144-154. [18] LI J, ZHEN D, SUI G, et al.Nanocomposite of Cu-TiO2-SiO2 with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(8): 6265-6270. [19] 王贤亲, 张国亮, 张凤宝. Cu2+/TiO2-SiO2催化剂的制备及其光催化降解气相间二甲苯的性能[J]. 石油化工, 2006, 35(3): 277-280. WANG Xianqin, ZHANG Guoliang, ZHANG Fengbao.Preparation of Cu2+/TiO2-SiO2 catalyst and its photo catalytic activity for degradation of m-xylene in gaseous-phase[J]. Petrochemical Technology, 2006, 35(3): 277-280. [20] ZELEKEW O A, KUO D H.Facile synthesis of SiO2@CuxO@TiO2 hetero structures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants[J]. Applied Surface Science, 2017, 397(9): 110-118. [21] 黄继武, 李周. 多晶材料X射线衍射[M]. 北京: 冶金工业出版社, 2012: 119-130. HUANG Jiwu, LI Zhou.X-ray Diffraction (XRD) of Polycrystalline Materials[M]. Beijing: Metallurgical Industry Press, 2012: 119-130. [22] XIN B F, WANG P, DING D D, et al.Effect of surface species on Cu-TiO2 photo catalytic activity[J]. Applied Surface Science, 2008, 254(9): 2569-2574. [23] SWAMY V, KUZNETSOV A, DUBROVINSKY L S, et al.Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2[J]. Physical Review B, 2005, 71(18): 184302-184313. [24] COLON G, MAICU M, HIDALGO M C, et al.Cu-doped TiO2 systems with improved photo catalytic activity[J]. Applied Catalysis B: Environmental, 2006, 67(1-2): 41-51. [25] GANESH I, KUMAR P P, ANNAPOORNA I.Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photo electrochemical, and photo catalytic applications[J]. Applied Surface Science, 2014, 293(1): 229-247. [26] CORDOBA G, VINIEGRA M, FIERRO J L G, et al. TPR, ESR, and XPS Study of Cu2+ Ions in Sol-Gel-Derived TiO2[J]. Journal of Solid State Chemistry, 1998, 138(1): 1-6. [27] FU M, LI Y, WU S, et al.Sol-gel preparation and enhanced photo catalytic performance of Cu-doped ZnO nanoparticles[J]. Applied Surface Science, 2011, 258(4): 1587-1591. [28] 曹立礼. 材料表面科学[M]. 北京: 清华大学出版社, 2007: 171-198. CAO Lili.Material Surface Science[M]. Beijing: Tsinghua University Press, 2007: 171-198. [29] GOPEL W, ANDERSON J A, FRANKEL D, et al.Surface defects of TiO2 (110): a combined XPS, XAES and ELS study[J]. Surface Science, 1984, 139(2/3): 333-346. [30] POZNYSK S K, PERGUSHOV V I, KOKORIN A I, et al.Structure and electrochemical properties of species formed as a result of Cu(II) ion adsorption onto TiO2 nanoparticles[J]. Journal of Physical Chemistry B, 1990, 30(8): 111-125. [31] LIU Y, JORDAN R G, QIU S L.Electronic structrs of order Ag-Mg alloys[J]. Physical Review B, 1994, 49(7): 4478-4484. [32] VAMATHEVAN V, TSE H, AMAL R.Effects of Fe3+ and Ag+ ions on the photo catalytic degradation of sucrose in water[J]. Catalysis Today, 2001, 68(1): 201-208. [33] IRIE H, KAMIYA K, SHIBANUMA T, et al.Visible Light-Sensitive Cu(II)-Grafted TiO2 Photo catalysts: Activities and X-ray absorption fine structure analyses[J]. Journal of Physical Chemistry C, 2009, 113(24): 10761-10766. |
|
|
|