|
|
Equivalent thermal conductivity of composites reinforced by carbon fiber with 2.5D fabric based on unit cell |
LI Hui, DU Jianhua, WANG Haoxu |
Department of Science Research, Academy of Army Armored Force, Beijing 100072, China |
|
|
Abstract The microstructure model of carbon fiber bundles and the unit cell structure model of the composites reinforced by carbon fiber with 2.5D fabric were established by finite element method. The equivalent thermal conductivity of carbon fiber bundles and composites in steady thermal conditions were calculated. The effects of carbon fiber diameter and the space between two carbon fibers on the thermal conductivity in axial and radial direction of carbon fiber bundles and in thickness direction of the composites were investigated. The results show that, the thermal conductivity of the carbon matrix is between the radial thermal conductivity and the axial thermal conductivity of carbon fiber. With increasing the carbon fiber diameter, the axial thermal conductivity of the carbon fiber bundles increases, the radial thermal conductivity and the thermal conductivity of the composites in thickness direction decrease. With increasing the space between two carbon fibers, the axial thermal conductivity of the carbon fiber bundles decreases, the radial thermal conductivity and the thermal conductivity of the composites in thickness direction increase.
|
Received: 13 October 2017
Published: 11 July 2019
|
|
|
|
|
[1] ROLP L.The electrical resistance of binary metallic mixtures[J]. Journal of Applied Physics, 1952, 23(7): 779-784. [2] HASHIN Z, SHTRIKMAN S.A variational approach to the theory of the effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics, 1962, 33(10): 3125-3131. [3] LAWRENCE E, NIELSEN. Generalized equation for the elastic moduli of composite materials[J]. Journal of Applied Physics, 1970, 41(11): 4626-4627. [4] TORQUATO S, HASLACH H.Random Heterogeneous Materials: Microstructure and Macroscopic Properties[M]. New York: Springer, 2002, 55(4): B62. [5] 孔清, 樊桢, 余立琼, 等. 高导热C/C复合材料发展现状[J].宇航材料工艺, 2014, 44(1): 16-23. KONG Qing, FAN Zhen, YU Liqiong, et al.Progress of high- thermal conductivity carbon/carbon composites[J]. Aerospace Materials & Technology, 2014, 44(1): 16-23. [6] 易法军, 张巍, 孟松鹤, 等. 复合材料高温热物理性能实验研究[J]. 宇航学报, 2002, 23(5): 85-88. YI Fajun, ZHANG Wei, FENG Songhe, et al.An experimental study on thermophysical properties of C/C composites at elevated temperature[J]. Journal of Astronautics, 2002, 23(5): 85-88. [7] MANEL H, BOUDJEMAA A, ABDERRAHIM B.Thermal conductivity of polymer/carbon nanotube composites[J]. Materials Science Forum, 2012, 714(3): 99-113. [8] BA N, CHARLES H, HENAGER J.Fiber/matrix interfacial thermal conductance effect on the thermal conductivity of SiC/SiC composites[J]. Journal of Nuclear Materials, 2013, 440(1): 11-20. [9] 李丽, 肖红, 程博闻, 等. 基于瞬变平面热源法的纤维热导率测试[J]. 纺织学报, 2016, 37(12): 18-23. LI Li, XIAO Hong, CHENG Bowen, et al.Testing of thermal conductivity of fiber based on transient plane heat source method[J]. Journal of Textile Research, 2016,37(12): 18-23. [10] 常晓权, 郑钢铁. 复合多层混合结构三维热传导分析[J]. 应用力学学报, 2005, 22(4): 633-637. CHANG Xiaoquan, ZHENG Gangtie.Three dimensional heat transfer analysis to hybrid multilayer composite structure[J]. Chinese Journal of Applied Mechanics, 2005, 22(4): 633-637. [11] ZHI Haifeng, JIA Yunzhi, ZHEN Fan, et al.An analytical model of thermal conductivity for carbon/carbon composites with pitch-based matrix[J]. Advances in Mechanical Engineering, 2014, 2014(1): 1-12. [12] 梁珩, 童明波, 王玉青, 等. 细编穿刺C/C复合材料热导率数值模拟[J]. 固体火箭技术, 2017, 40(3): 364-372. LIANG Heng, TONG Mingbo, WANG Yuqing, et al.Simulation on effective thermal conductivity of fine weave pierced C/C composite[J]. Journal of Solid Rocket Technology, 2017, 40(3): 364-372. [13] 江华, 毛军逵, 屠泽灿, 等. 基于微结构识别的单向复合材料导热系数预估[J]. 航空动力学报, 2016, 31(11): 2642-2651. JIANG Hua, MAO Junkui, TU Zecan, et al.Thermal conductivity prediction of unidirectional composites based on microstructure identification[J]. Journal of Aerospace Power, 2016, 31(11): 2642-2651. [14] 陆思达, 高希光, 宋迎东. 基于有限元法的平纹编织C/SiC复合材料等效导热系数预测方法[J]. 航空动力学报, 2014, 29(7): 1574-1582. LU Sida, GAO Xiguang, SONG Yingdong.Prediction method on equivalent thermal conductivity coefficient of plain braided C/SiC composites material based on finite element method[J]. Journal of Aerospace Power, 2014, 29(7): 1574-1582. [15] 聂荣华, 矫桂琼, 王波. 二维编织C/SiC陶瓷基复合材料的热传导系数预测[J]. 复合材料学报, 2009, 26(3): 169-174. NIU Ronghua, Jiao Guiqiong, WANG Bo.Prediction on thermal conductivity for 2D braided C/SiC composites[J]. Acta Materiae Compositae Sinica, 2009, 26(3): 169-174. [16] 庞旭明, 周剑秋, 杨晶歆, 等. 含孔隙及界面热阻的复合材料有效导热系数[J]. 中国有色金属学报, 2016, 26(8): 1668-1674. PANG Xuming, ZHOU Jianqiu, YANG Jingxin, et al.Effective thermal conductivity of composite materials containing pore and interface thermal resistance[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8): 1668-1674. [17] 张彪, 齐宏, 阮立明. 二维多孔热密封材料的有效导热系数模拟[J]. 工程热物理学报, 2012, 33(7): 1229-1232. ZHANG Biao, QI Hong, RUAN Liming.Two-dimensional simulation for the effective thermal conductivity of heat-sealing porous material[J]. Journal of Engineering Thermophysics, 2012, 33(7): 1229-1232. [18] FAROOQI J K, SHEIKH M A.Finite element modelling of thermal transport in ceramic matrix composites[J]. Computational Materials Science, 2006, 37(3): 361-373. [19] 邵海成, 刘桂武, 乔冠军, 等. 低密度炭/炭保温材料导热性能的影响因素[J]. 材料科学与工程学报, 2013, 31(5): 627-631. SHAO Haicheng, LIU Guiwu, QIAO Guanjun, et al.Factors affecting thermal conductivity of low-density carbon/carbon insulation materials[J]. Journal of Materials Science & Engineering, 2013, 31(5): 627-631. |
|
|
|